<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv5 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
Run commands below to reproduce results
on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https:/
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
yolov5小型型固定翼无人机检测,训练好的权重,可以直接使用,并附有2000左右yolo小型型固定翼无人机检测数据集,数据集目录已经配置好,yolo格式(txt)的标签,划分好 train,val, test,并附有data.yaml文件,yolov5、yolov7、yolov8等算法可以直接进行训练模型, 数据集和检测结果参考: https://blog.csdn.net/zhiqingAI/article/details/124230743 https://blog.csdn.net/zhiqingAI/article/details/136952543 数据集配置目录结构data.yaml: nc: 1 names: ['FixedWing-Drone']
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv5算法小型型固定翼无人机检测权重+2000数据集+使用教程 (2000个子文件)
3.9.0' 0B
labels.cache 494KB
1577_jpeg.rf.ae8d9e1ccde23215ea2abfd37797e313.jpg 35KB
1380_jpeg.rf.d89a0de9178cf8f9ae38def6a7f30bb5.jpg 23KB
389_jpeg.rf.fe916a6d1c2cea2ec39722855b6ae80b.jpg 19KB
450_jpeg.rf.61244f9d4119ff60a7c3a82bef4a75b5.jpg 14KB
README.md 14KB
README.md 10KB
【yolov3-YOLOv5-yolov7-yolov8环境配置-教程1】.md 10KB
CONTRIBUTING.md 5KB
【yolov3-YOLOv5-yolov7-yolov8环境配置-教程2】.md 5KB
README.md 2KB
bug-report.md 1KB
feature-request.md 739B
question.md 139B
【yolov3-YOLOv5-yolov7-yolov8环境配置-教程1】.pdf 6.55MB
【yolov3-YOLOv5-yolov7-yolov8环境配置-教程2】.pdf 580KB
yolov5s6.pt 24.47MB
datasets.py 43KB
general.py 33KB
train.py 31KB
wandb_utils.py 25KB
tf.py 20KB
common.py 20KB
plots.py 19KB
val.py 17KB
export.py 16KB
detect.py 15KB
yolo.py 14KB
torch_utils.py 14KB
metrics.py 13KB
augmentations.py 11KB
loss.py 9KB
autoanchor.py 7KB
__init__.py 6KB
hubconf.py 6KB
downloads.py 6KB
experimental.py 4KB
activations.py 4KB
callbacks.py 2KB
resume.py 1KB
restapi.py 1KB
sweep.py 989B
log_dataset.py 891B
example_request.py 299B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
userdata.sh 1KB
get_coco.sh 900B
mime.sh 780B
get_coco128.sh 615B
download_weights.sh 443B
requirements.txt 883B
additional_requirements.txt 105B
1842_jpeg.rf.9db29f9777ad269cbeb6a51e122e7a98.txt 45B
1636_jpeg.rf.fba4829f23ada241fd940e1cf30b9025.txt 45B
1568_jpeg.rf.853d1f56847fdec85ea0ad18b4aee2b6.txt 45B
1464_jpeg.rf.e7e7031fca076d3ba8e982176fe7e7df.txt 45B
1371_jpeg.rf.8a2b3766d05d4c75059a7c9d625c4b49.txt 45B
1390_jpeg.rf.a9042334085426a6fc62f48d1418a5ee.txt 45B
1321_jpeg.rf.b205f842ca053094c6233025591e041a.txt 45B
1191_jpeg.rf.d7c8533800dac017535dd8fcd2dfba91.txt 45B
1406_jpeg.rf.633f148b2f87d4d64cfc85232564ae52.txt 45B
1467_jpeg.rf.11883816a063961da2560306b2886552.txt 45B
1286_jpeg.rf.06759cdf125e209624aeaf19da197dd1.txt 45B
1937_jpeg.rf.4d3571dcb22b5fe29fc23a1e120aa052.txt 45B
1022_jpeg.rf.af87e87a32f1f05d867f8c38a5e56bc9.txt 45B
1840_jpeg.rf.a5af52709ca200c3f28493d3cd32d140.txt 45B
1114_jpeg.rf.5bd90a013f02db91b7048279dd9b128d.txt 45B
1245_jpeg.rf.e15aa777c5b722fefba2a37c1f01951e.txt 45B
1453_jpeg.rf.eb1002e22e3ba8bd3762d144c0771fd7.txt 45B
1430_jpeg.rf.4ca456106a0713f19be996028fad721d.txt 45B
1072_jpeg.rf.0c49675af84f3b53df7d0c73fdd234b0.txt 45B
1300_jpeg.rf.2e2b7662922d0d238b6369da622d642a.txt 45B
1278_jpeg.rf.5897a284925ef3ec0c1e0b6a9934efa8.txt 45B
1516_jpeg.rf.1db0dc83b78938611326acde2237d597.txt 45B
1416_jpeg.rf.a52b4de46c62ae89c9af1b437c2d3de7.txt 45B
1318_jpeg.rf.927bf4323adfb65e09f2366dbfa0633b.txt 45B
1233_jpeg.rf.d6166959086b7c737c545f4d1ec173f6.txt 45B
1025_jpeg.rf.6f981aa2ab7fdcf3d7f5962ffa30c6c7.txt 45B
995_jpeg.rf.f235ba73bf87db6ae2d81e97b980e75c.txt 45B
1333_jpeg.rf.3bdc7339b9e25739b99c9f89d0949bf1.txt 45B
1804_jpeg.rf.02ffb237d92d7d323da50834b3add1e3.txt 45B
1175_jpeg.rf.d35a6b25a398e186c29db9871e6a3220.txt 45B
1669_jpeg.rf.45b9cb6ca60a13508657f48f807cd6b0.txt 45B
1419_jpeg.rf.037dcb9158d3d146f2e50aee58b2e870.txt 45B
1056_jpeg.rf.0dc02c5dd4efb0beb3abe752f76121da.txt 45B
1479_jpeg.rf.abb605a908c5084c665a158f86011e86.txt 45B
1103_jpeg.rf.a18ba0f313eb29b3e24f836373d89008.txt 45B
1224_jpeg.rf.edf15b81dd65c251acadaea77e98bad5.txt 45B
1326_jpeg.rf.a162f23ce235c9254dc920e67d71bb6e.txt 45B
1361_jpeg.rf.002e53cb418267323659c997ab04d411.txt 45B
1307_jpeg.rf.1203ca602e76d597bf7834ce11105475.txt 45B
1471_jpeg.rf.b129f7d30a78767a14b70aed35913f66.txt 45B
1518_jpeg.rf.8db9f3905579df80e5faa196ce2ff15f.txt 45B
1835_jpeg.rf.ad51e0a0dac8107db4c0ebe06e673be9.txt 45B
1950_jpeg.rf.9e0da3bbc3e7478b5a75272556acb342.txt 45B
1472_jpeg.rf.b08b8bf9e402f3d7c7a530252336eaed.txt 45B
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
stsdddd
- 粉丝: 3w+
- 资源: 980
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 大学生科创项目在线管理系统的设计与实现-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 本科设计基于java实现智能二维码门禁管理系统源码+论文(高分毕设)
- 毕业生实习与就业管理系统的设计与实现-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 3b030本科生就业推荐系统_springboot+vue0.zip
- 3b029.OA办公管理系统_springboot+vue0.zip
- 基于java的火车票订票系统的设计与实现-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 基于JAVA的房地产销售管理系统的设计与实现-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 基于Java web的药店管理系统的设计与实现-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 毕业就业信息管理系统的设计与实现-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 基于JavaWeb的鲜牛奶订购系统的设计与实现-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 洞见研报PingPong金融(跨境电商金融服务商,杭州乒乓智能技术有限公司)创投信息
- 车辆管理系统-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 高校专业实习管理系统的设计和开发-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 反欺诈平台的建设-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 基于python+flask+postgreSQL技术设计并实现旅游数据可视化平台
- 火锅店管理系统-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功