<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv5 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
Run commands below to reproduce results
on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https:/
没有合适的资源?快使用搜索试试~ 我知道了~
yolov5摩托车佩戴头盔和驾驶员检测模型 yolov5-6.0-helmat-mortor-1225.zip
共195个文件
yaml:46个
jpg:32个
py:31个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 1 下载量 48 浏览量
2023-12-25
22:32:14
上传
评论
收藏 212.11MB ZIP 举报
温馨提示
yolov5摩托车佩戴头盔和驾驶员检测模型;训练好的yolov55摩托车佩戴头盔和驾驶员检测模型,可直接使用;5摩托车佩戴头盔和驾驶员检测模型, 摩托车佩戴头盔和驾驶员检测模型;摩托车佩戴头盔和驾驶员检测模型;摩托车佩戴头盔和驾驶员检测模型;摩托车佩戴头盔和驾驶员检测模型;摩托车佩戴头盔和驾驶员检测模型;摩托车佩戴头盔和驾驶员检测模型;摩托车佩戴头盔和驾驶员检测模型;摩托车佩戴头盔和驾驶员检测模型 可视化参考:https://blog.csdn.net/zhiqingAI/article/details/134629857 https://blog.csdn.net/zhiqingAI/article/details/124230743
资源推荐
资源详情
资源评论
收起资源包目录
yolov5摩托车佩戴头盔和驾驶员检测模型 yolov5-6.0-helmat-mortor-1225.zip (195个子文件)
events.out.tfevents.1702906184.USER-20231125JB.8700.0 1.9MB
events.out.tfevents.1703077672.USER-20231125JB.7228.0 1.86MB
events.out.tfevents.1703337184.USER-20231125JB.9092.0 1.67MB
3.9.0' 0B
1.9.0' 0B
2.4.1' 0B
4.1' 0B
0.3.6' 0B
results.csv 44KB
results.csv 44KB
results.csv 19KB
Dockerfile 2KB
Dockerfile 821B
.dockerignore 4KB
.gitattributes 75B
.gitignore 4KB
tutorial.ipynb 48KB
train_batch1.jpg 902KB
val_batch1_pred.jpg 875KB
train_batch0.jpg 872KB
train_batch1.jpg 870KB
train_batch2.jpg 855KB
val_batch1_pred.jpg 847KB
val_batch1_labels.jpg 840KB
val_batch0_pred.jpg 826KB
val_batch0_pred.jpg 822KB
val_batch1_labels.jpg 820KB
train_batch0.jpg 816KB
val_batch0_pred.jpg 816KB
val_batch0_labels.jpg 806KB
val_batch0_labels.jpg 806KB
val_batch0_labels.jpg 806KB
val_batch2_labels.jpg 804KB
train_batch2.jpg 802KB
val_batch2_pred.jpg 797KB
val_batch2_pred.jpg 796KB
val_batch2_pred.jpg 787KB
val_batch2_labels.jpg 784KB
val_batch1_pred.jpg 783KB
val_batch2_labels.jpg 779KB
val_batch1_labels.jpg 779KB
bus.jpg 476KB
labels_correlogram.jpg 277KB
labels_correlogram.jpg 277KB
labels_correlogram.jpg 277KB
labels.jpg 202KB
labels.jpg 202KB
labels.jpg 202KB
zidane.jpg 165KB
LICENSE 34KB
README.md 14KB
README.md 10KB
CONTRIBUTING.md 5KB
README.md 2KB
bug-report.md 1KB
feature-request.md 739B
question.md 139B
results.png 373KB
F1_curve.png 345KB
F1_curve.png 337KB
F1_curve.png 335KB
P_curve.png 314KB
R_curve.png 307KB
R_curve.png 305KB
R_curve.png 304KB
P_curve.png 298KB
P_curve.png 294KB
PR_curve.png 279KB
PR_curve.png 270KB
PR_curve.png 266KB
confusion_matrix.png 265KB
confusion_matrix.png 261KB
confusion_matrix.png 260KB
results.png 239KB
results.png 235KB
yolov5m.pt 40.72MB
best.pt 40.37MB
last.pt 40.37MB
yolov5s6.pt 24.47MB
yolov5s.pt 14.12MB
best.pt 13.84MB
last.pt 13.84MB
best.pt 3.77MB
last.pt 3.77MB
yolov5n.pt 3.77MB
datasets.py 43KB
general.py 33KB
train.py 31KB
wandb_utils.py 25KB
tf.py 20KB
common.py 20KB
plots.py 19KB
val.py 17KB
export.py 16KB
detect.py 15KB
yolo.py 14KB
torch_utils.py 14KB
metrics.py 13KB
augmentations.py 11KB
loss.py 9KB
共 195 条
- 1
- 2
资源评论
- will5843291332024-01-12资源不错,很实用,内容全面,介绍详细,很好用,谢谢分享。
stsdddd
- 粉丝: 3w+
- 资源: 929
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 计算机基础知识及应用技术总结
- 计算机语言学中Linux 安装 mysql
- 基于百度飞桨PaddleOCR的C++代码修改并封装的.NET的OCR工具本地类库,可离线使用 包含文本识别、文本检测、表格识别
- image_download_1730618390553.jpg
- 全新高通平台SN修改写号
- C++实现WebService协议客户端
- C#ASP.NET复印店销售收银系统源码数据库 SQL2008源码类型 WebForm
- 设备第二次考核.zip
- 【重磅,更新!】全国31省份各省级城市和农村基尼系数测算面板数据(1989-2022年)
- PMSM Electrical Parameters Measurement by: Viktor Bobek
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功