<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv5 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
Run commands below to reproduce results
on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https:/
没有合适的资源?快使用搜索试试~ 我知道了~
yolov5摩托车佩戴头盔和驾驶员检测模型 yolov5-6.0-helmat-mortor-1225.zip
共195个文件
yaml:46个
jpg:32个
py:31个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 1 下载量 117 浏览量
2023-12-25
22:32:14
上传
评论
收藏 212.11MB ZIP 举报
温馨提示
yolov5摩托车佩戴头盔和驾驶员检测模型;训练好的yolov55摩托车佩戴头盔和驾驶员检测模型,可直接使用;5摩托车佩戴头盔和驾驶员检测模型, 摩托车佩戴头盔和驾驶员检测模型;摩托车佩戴头盔和驾驶员检测模型;摩托车佩戴头盔和驾驶员检测模型;摩托车佩戴头盔和驾驶员检测模型;摩托车佩戴头盔和驾驶员检测模型;摩托车佩戴头盔和驾驶员检测模型;摩托车佩戴头盔和驾驶员检测模型;摩托车佩戴头盔和驾驶员检测模型 可视化参考:https://blog.csdn.net/zhiqingAI/article/details/134629857 https://blog.csdn.net/zhiqingAI/article/details/124230743
资源推荐
资源详情
资源评论
收起资源包目录
yolov5摩托车佩戴头盔和驾驶员检测模型 yolov5-6.0-helmat-mortor-1225.zip (195个子文件)
events.out.tfevents.1702906184.USER-20231125JB.8700.0 1.9MB
events.out.tfevents.1703077672.USER-20231125JB.7228.0 1.86MB
events.out.tfevents.1703337184.USER-20231125JB.9092.0 1.67MB
3.9.0' 0B
1.9.0' 0B
2.4.1' 0B
4.1' 0B
0.3.6' 0B
results.csv 44KB
results.csv 44KB
results.csv 19KB
Dockerfile 2KB
Dockerfile 821B
.dockerignore 4KB
.gitattributes 75B
.gitignore 4KB
tutorial.ipynb 48KB
train_batch1.jpg 902KB
val_batch1_pred.jpg 875KB
train_batch0.jpg 872KB
train_batch1.jpg 870KB
train_batch2.jpg 855KB
val_batch1_pred.jpg 847KB
val_batch1_labels.jpg 840KB
val_batch0_pred.jpg 826KB
val_batch0_pred.jpg 822KB
val_batch1_labels.jpg 820KB
train_batch0.jpg 816KB
val_batch0_pred.jpg 816KB
val_batch0_labels.jpg 806KB
val_batch0_labels.jpg 806KB
val_batch0_labels.jpg 806KB
val_batch2_labels.jpg 804KB
train_batch2.jpg 802KB
val_batch2_pred.jpg 797KB
val_batch2_pred.jpg 796KB
val_batch2_pred.jpg 787KB
val_batch2_labels.jpg 784KB
val_batch1_pred.jpg 783KB
val_batch2_labels.jpg 779KB
val_batch1_labels.jpg 779KB
bus.jpg 476KB
labels_correlogram.jpg 277KB
labels_correlogram.jpg 277KB
labels_correlogram.jpg 277KB
labels.jpg 202KB
labels.jpg 202KB
labels.jpg 202KB
zidane.jpg 165KB
LICENSE 34KB
README.md 14KB
README.md 10KB
CONTRIBUTING.md 5KB
README.md 2KB
bug-report.md 1KB
feature-request.md 739B
question.md 139B
results.png 373KB
F1_curve.png 345KB
F1_curve.png 337KB
F1_curve.png 335KB
P_curve.png 314KB
R_curve.png 307KB
R_curve.png 305KB
R_curve.png 304KB
P_curve.png 298KB
P_curve.png 294KB
PR_curve.png 279KB
PR_curve.png 270KB
PR_curve.png 266KB
confusion_matrix.png 265KB
confusion_matrix.png 261KB
confusion_matrix.png 260KB
results.png 239KB
results.png 235KB
yolov5m.pt 40.72MB
best.pt 40.37MB
last.pt 40.37MB
yolov5s6.pt 24.47MB
yolov5s.pt 14.12MB
best.pt 13.84MB
last.pt 13.84MB
best.pt 3.77MB
last.pt 3.77MB
yolov5n.pt 3.77MB
datasets.py 43KB
general.py 33KB
train.py 31KB
wandb_utils.py 25KB
tf.py 20KB
common.py 20KB
plots.py 19KB
val.py 17KB
export.py 16KB
detect.py 15KB
yolo.py 14KB
torch_utils.py 14KB
metrics.py 13KB
augmentations.py 11KB
loss.py 9KB
共 195 条
- 1
- 2
资源评论
- will5843291332024-01-12资源不错,很实用,内容全面,介绍详细,很好用,谢谢分享。
stsdddd
- 粉丝: 3w+
- 资源: 951
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于Springboot+Vue多维分类的知识管理系统-毕业源码案例设计(源码+数据库).zip
- 基于Springboot+Vue房屋租赁管理系统毕业源码案例设计(源码+项目说明+演示视频).zip
- 日本预期寿命数据集.zip
- 基于Springboot+Vue高校教师电子名片系统-毕业源码案例设计(高分毕业设计).zip
- 基于Springboot+Vue高校教师科研管理系统-毕业源码案例设计(源码+论文).zip
- 基于Springboot+Vue高校专业实习管理系统的设计和开发-毕业源码案例设计(高分项目).zip
- 基于Springboot+Vue公司日常考勤系统-毕业源码案例设计(源码+项目说明+演示视频).zip
- adb-platform-tools
- 基于stm32的智能门锁系统
- 基于Springboot+Vue个人博客系统的设计与实现-毕业源码案例设计(高分毕业设计).zip
- 基于Springboot+Vue个性化定制的智慧校园管理系统设计-毕业源码案例设计(源码+论文).zip
- 使用Maxscript编写圣诞树建模教程及源代码下载
- csdn_v6.5.4.apk
- 基于Springboot+Vue华府便利店信息管理系统-毕业源码案例设计(高分毕业设计).zip
- 基于Springboot+Vue共享汽车管理系统-毕业源码案例设计(高分项目).zip
- 基于Springboot+Vue海滨体育馆管理系统设计毕业源码案例设计(高分毕业设计).zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功