# <span style="color:deepskyblue"> Real-time Object Detection and Tracking with YOLOv8 & Streamlit </span>
This repository is an extensive open-source project showcasing the seamless integration of **object detection and tracking** using **YOLOv8** (object detection algorithm), along with **Streamlit** (a popular Python web application framework for creating interactive web apps). The project offers a user-friendly and customizable interface designed to detect and track objects in real-time video streams from sources such as RTSP, UDP, and YouTube URLs, as well as static videos and images.
## <span style="color:deepskyblue">Explore Implementation Details on Medium (3 parts blog series) </span>
For a deeper dive into the implementation, check out my three-part blog series on [Medium](https://medium.com/@mycodingmantras), where I detail the [step-by-step process of creating this web application](https://medium.com/@mycodingmantras/building-a-real-time-object-detection-and-tracking-app-with-yolov8-and-streamlit-part-1-30c56f5eb956).
## <span style="color:deepskyblue">WebApp Demo on Streamlit Server</span>
Thank you team [Streamlit](<https://github.com/streamlit/streamlit>) for the community support for the cloud upload.
This app is up and running on Streamlit cloud server!!! You can check the demo of this web application on this link
[yolov8-streamlit-detection-tracking-webapp](https://yolov8-object-detection-and-tracking-app.streamlit.app/)
**Note**: In the demo, Due to non-availability of GPUs, you may encounter slow video inferencing.
## <span style="color:deepskyblue"> Tracking With Object Detection Demo</span>
<https://user-images.githubusercontent.com/104087274/234874398-75248e8c-6965-4c91-9176-622509f0ad86.mov>
## Overview
<https://github.com/user-attachments/assets/85df351a-371c-47e0-91a0-a816cf468d19.mov>
## Demo Pics
### Home page
<img src="https://github.com/CodingMantras/yolov8-streamlit-detection-tracking/blob/master/assets/pic1.png" >
### Page after uploading an image and object detection
<img src="https://github.com/CodingMantras/yolov8-streamlit-detection-tracking/blob/master/assets/pic3.png" >
### Segmentation task on image
<img src="https://github.com/CodingMantras/yolov8-streamlit-detection-tracking/blob/master/assets/segmentation.png" >
## Requirements
Python 3.6+
YOLOv8
Streamlit
```bash
pip install ultralytics streamlit pytube
```
## Installation
- Clone the repository: git clone <https://github.com/CodingMantras/yolov8-streamlit-detection-tracking.git>
- Change to the repository directory: `cd yolov8-streamlit-detection-tracking`
- Create `weights`, `videos`, and `images` directories inside the project.
- Download the pre-trained YOLOv8 weights from (<https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt>) and save them to the `weights` directory in the same project.
## Usage
- Run the app with the following command: `streamlit run app.py`
- The app should open in a new browser window.
### ML Model Config
- Select task (Detection, Segmentation)
- Select model confidence
- Use the slider to adjust the confidence threshold (25-100) for the model.
One the model config is done, select a source.
### Detection on images
- The default image with its objects-detected image is displayed on the main page.
- Select a source. (radio button selection `Image`).
- Upload an image by clicking on the "Browse files" button.
- Click the "Detect Objects" button to run the object detection algorithm on the uploaded image with the selected confidence threshold.
- The resulting image with objects detected will be displayed on the page. Click the "Download Image" button to download the image.("If save image to download" is selected)
## Detection in Videos
- Create a folder with name `videos` in the same directory
- Dump your videos in this folder
- In `settings.py` edit the following lines.
```python
# video
VIDEO_DIR = ROOT / 'videos' # After creating the videos folder
# Suppose you have four videos inside videos folder
# Edit the name of video_1, 2, 3, 4 (with the names of your video files)
VIDEO_1_PATH = VIDEO_DIR / 'video_1.mp4'
VIDEO_2_PATH = VIDEO_DIR / 'video_2.mp4'
VIDEO_3_PATH = VIDEO_DIR / 'video_3.mp4'
VIDEO_4_PATH = VIDEO_DIR / 'video_4.mp4'
# Edit the same names here also.
VIDEOS_DICT = {
'video_1': VIDEO_1_PATH,
'video_2': VIDEO_2_PATH,
'video_3': VIDEO_3_PATH,
'video_4': VIDEO_4_PATH,
}
# Your videos will start appearing inside streamlit webapp 'Choose a video'.
```
- Click on `Detect Video Objects` button and the selected task (detection/segmentation) will start on the selected video.
### Detection on RTSP
- Select the RTSP stream button
- Enter the rtsp url inside the textbox and hit `Detect Objects` button
### Detection on YouTube Video URL
- Select the source as YouTube
- Copy paste the url inside the text box.
- The detection/segmentation task will start on the YouTube video url
<https://user-images.githubusercontent.com/104087274/226178296-684ad72a-fe5f-4589-b668-95c835cd8d8a.mov>
## Acknowledgements
This app uses [YOLOv8](<https://github.com/ultralytics/ultralytics>) for object detection algorithm and [Streamlit](<https://github.com/streamlit/streamlit>) library for the user interface.
### Disclaimer
This project is intended as a learning exercise and demonstration of integrating various technologies, including:
- Streamlit
- YoloV8
- Object-Detection on Images And Live Video Streams
- Python-OpenCV
Please note that this application is not designed or tested for production use. It serves as an educational resource and a showcase of technology integration rather than a production-ready web application.
Contributors and users are welcome to explore, learn from, and build upon this project for educational purposes.
### Hit star ⭐ if you like this repo!!!
赵闪闪168
- 粉丝: 1726
- 资源: 6942
最新资源
- 073ANFIS matlab代码.rar
- 081含分布式电源接入的配电网可靠性评估 matlab代码.rar
- 含裂缝地层,非均质地层的多相流模拟,间断伽辽金方法
- 082基于二阶锥规划的主动配电网最优潮流求解matlab代码.rar
- 085层次分析法和熵权法 matlab代码.rar
- 086 可靠性评估 matlab代码.rar
- 090分时电价下用户需求响应策略优化matlab代码.rar
- 089 二阶锥最优潮流Matlab代码.rar
- comsol亚波长超声聚焦 仿真 生物超声、高强度聚焦能器 超声能器 超声传感器 MEMS PMUT PVDF压电能量收集器 1-3复合压电陶瓷 1-2复合压电陶瓷设计 超声匹配层研究 等等
- 基于转子磁链模型的改进SMO滑模观测器,用于实现PMSM永磁同步电机的无传感器矢量控制 角度观测精度高,误差小,且可以有效解决传统SMO观测器的带载转速抖动问题,以及低转速下由于反电动势幅值太低导致
- foc滑膜观测器(SMO+PLL)matlab模型,仿真里面是直接0速闭环启动的效果,当然这是仿真,应用到硬件肯定要加开环启动,目前已经在M4的硬件中实现了,效果还不错,现在出这个模型,matlab
- 永磁同步电机三闭环控制仿真 位置闭环 simulink
- 基于三菱PLC和组态王的舞台灯控制系统 带解释的梯形图程序,接线图原理图图纸,io分配,组态画面
- 前端分析-2023071100789
- 多智能体一致性仿真 简单的多智能体一致性性仿真图,包含状态轨迹图和控制输入图 程序简单,所以便宜,但是有注释,都能看懂,适合初学者
- CClearner安装包
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈