# YOLOv3-Based-Face-Detection-Tracking
This is a robot project for television live. System will tracking the host's face, making the face in the middle of the screen. Main algorithm is Yolov3, trained on WIDER FACE and tested on FDDB benchmark. Extremely fine performance!
## ***SEE THE VIDEO***: https://v.youku.com/v_show/id_XMzc1OTk5MTg3Mg==.html?spm=a2hzp.8244740.0.0
# Thanks to ***https://github.com/experiencor/keras-yolo3***
I used part of this project, changed some codes of it.
# How to USE
## Environmnet Requirements:
I creadted this project on my DL desktop, its characteristics are as following:
* |name|details|
* |system| linux16.04/windows10|
* |platform| anaconda2 or 3|
* |GPU| GTX1080TI|
* |CUDA| 9.0|
* |CUDNN| 5.0|
* |tensoflow-gpu| 1.8.3|
Some other dependecies you need for DL may occur some version conflicts, just Google it!
## Here comes the code
First, download my tensorflow graph file from here: https://pan.baidu.com/s/1FRxVacEraMQkIQnDYxnO-w
Change the .pb file path called in the file ***loadtfpb.py***, then you can run it and see the magic! Another code ***load_tf_pb-control-robot.py*** is the file I used control my robot. You can isgore that.
# Results
## Test with pics from the internet and myself :)
![test1](https://github.com/Chenyang-ZHU/YOLOv3-Based-Face-Detection-Tracking/blob/master/github_photo/test3_4.jpg)
![test2](https://github.com/Chenyang-ZHU/YOLOv3-Based-Face-Detection-Tracking/blob/master/github_photo/test3_34.jpg)
![test3](https://github.com/Chenyang-ZHU/YOLOv3-Based-Face-Detection-Tracking/blob/master/github_photo/test2_66.jpg)
## Compare with other detector:
I also found a MTCNN detector. In comparison, YOLOv3 is more robust. In the following, the first image is MTCNN test result and the second one is YOLOv3 test.
![test3](https://github.com/Chenyang-ZHU/YOLOv3-Based-Face-Detection-Tracking/blob/master/github_photo/mtcnn_test.png)
![test3](https://github.com/Chenyang-ZHU/YOLOv3-Based-Face-Detection-Tracking/blob/master/github_photo/yolo3_test.png)
Trained the models with 10 epoches on Wider-Face becnhmark and test them with FDDB benchmark. Here is the ROC curve. You can judge by yourself!
![test3](https://github.com/Chenyang-ZHU/YOLOv3-Based-Face-Detection-Tracking/blob/master/github_photo/roc.png)
***Have Fun!***
没有合适的资源?快使用搜索试试~ 我知道了~
这是一个电视直播机器人项目 系统会跟踪主持人的脸部,使脸部位于屏幕中间 主要算法是Yolov3,在WIDER FACE上训练并在...
共14个文件
py:5个
jpg:3个
png:3个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 56 浏览量
2024-11-27
00:12:10
上传
评论
收藏 2.76MB ZIP 举报
温馨提示
这是一个电视直播机器人项目。系统会跟踪主持人的脸部,使脸部位于屏幕中间。主要算法是Yolov3,在WIDER FACE上训练并在FDDB基准上测试。性能非常好!基于 YOLOv3 的人脸检测跟踪这是一个电视直播机器人项目。系统会跟踪主持人的脸部,使脸部位于屏幕中间。主要算法是Yolov3,在WIDER FACE上训练并在FDDB基准上测试。性能非常好!观看视频 https://v.youku.com/v_show/id_XMzc1OTk5MTg3Mg==.html? spm=a2hzp.8244740.0.0感谢https://github.com/experiencor/keras-yolo3我使用了该项目的一部分,更改了其中的一些代码。如何使用环境要求我在我的DL桌面上创建了此项目,其特点如下|姓名|详细信息||系统| linux16.04/windows10||平台| anaconda2 或 3||GPU| GTX1080TI||CUDA| 9.0||CUDNN| 5.0||tensoflow-gpu| 1.8.3|深度学习所需的一些
资源推荐
资源详情
资源评论
收起资源包目录
这是一个电视直播机器人项目。系统会跟踪主持人的脸部,使脸部位于屏幕中间。主要算法是Yolov3,在WIDER FACE上训练并在FDDB基准上测试。性能非常好!.zip (14个子文件)
loadtfpb.py 5KB
标签.txt 4B
load_tf_pb-control_robot.py 6KB
资源内容.txt 933B
colors.py 2KB
github_photo
yolo3_test.png 1.01MB
roc.png 13KB
test3_34.jpg 122KB
test3_4.jpg 100KB
test2_66.jpg 523KB
mtcnn_test.png 1.03MB
README.md 2KB
b_box.py 4KB
utils_hhh.py 12KB
共 14 条
- 1
资源评论
赵闪闪168
- 粉丝: 1726
- 资源: 6171
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功