### You Only Look Once ( YOLO v1 )
Implementation of YOLO object detection pipeline using tensorflow. YOLO is a real time object detection method. It treats both object detection and localisation as regression problems. This is in contrast to previous object detection pipelines such as R-CNN, which had seperate entities for detection and localisation and were far more complicated to fine tune/train. More on YOLO [here](https://arxiv.org/pdf/1506.02640.pdf).
As of now, YOLO v2 is out. Check it out [here](https://arxiv.org/pdf/1612.08242.pdf).
### How to use ?
Make sure that weight file is present in weights directory. Currently there are three modes, all pertaining to test the pre-trained model.
- 'testDB' - Tests the code on a database. ( PASCAL VOC 2007, 2012, MS-COCO ). Keep in mind the model has been trained on PASCAL VOC 2007+2012. So any other dataset would require training. As this has not been implemented yet, [darkflow](https://github.com/thtrieu/darkflow) may help.
- 'testLive' - Tests from a live Webcam feed.
- 'testFile' - Tests on a single image.
By default, it runs on 'testLive' mode.
```
python yolo.py
```
### Results (PACAL VOC 2007)
Class Name | Ground Truth | Predicted | True Positive | False Positive | Avg. Precision
---------- | ------------ | --------- | ------------- | -------------- | --------------
aeroplane| 311| 213| 141| 72| 0.55494075262829001
bicycle| 389| 237| 157| 80| 0.56105639251746608
bird| 576| 359| 184| 175| 0.42433899865958929
boat| 393| 213| 77| 136| 0.24679748475368918
bottle| 657| 128| 33| 95| 0.17272727272727273
bus| 254| 168| 117| 51| 0.54621080695222668
car| 1541| 925| 436| 489| 0.34186953795331443
cat| 370| 322| 250| 72| 0.67658801636799115
chair| 1374| 420| 102| 318| 0.12245608573113981
cow| 329| 204| 66| 138| 0.17318304265255621
diningtable| 299| 160| 114| 46| 0.6494860956834515
dog| 530| 422| 299| 123| 0.63538308205967287
horse| 395| 279| 209| 70| 0.63316214093397671
motorbike| 369| 228| 140| 88| 0.48458388143892261
person| 5227| 3319| 1166| 2153| 0.23070649513423477
pottedplant| 592| 200| 53| 147| 0.17236723672367235
sheep| 311| 172| 44| 128| 0.16292819499341238
sofa| 396| 141| 105| 36| 0.6494177280693908
train| 302| 255| 191| 64| 0.66130285346624584
tvmonitor| 361| 209| 133| 76| 0.54199124564843304
### Requirements
- Tenseflow 1.0
- OpenCV 2
- Python 2
- Pre-trained [weights](https://drive.google.com/file/d/0B2JbaJSrWLpza08yS2FSUnV2dlE/view)
#### TODO List
- [x] Complete the mean-Average Precision
- [ ] Document the code
- [x] Add PASCAL VOC 2007 results to the readme
- [ ] Complete network training function
### References
- Author's [Website](https://pjreddie.com/darknet/yolo/)
- [This](https://github.com/hizhangp/yolo_tensorflow) implementation
赵闪闪168
- 粉丝: 1726
- 资源: 6172
最新资源
- 基于Vue框架的学生交流互助平台源码(java毕业设计完整源码).zip
- 基于web的篮球视频网站设计与实现.doc
- 基于javaweb的KTV点歌管理系统论文.doc
- 谷歌浏览器开发版GoogleChromeDev for Mac v112.0.5615.12
- 谷歌浏览器金丝雀版GoogleChromeCanary for Mac v113.0.5638.0
- 谷歌浏览器测试版GoogleChromeBeta for Mac v111.0.5563.64
- 电池管理 coconutBattery for Mac v4.0.1.130
- 网页设计软件 EverWeb for Mac v4.3.0
- python数据的读取与处理
- Unity游戏开发之基于C#的玩家控制与碰撞检测机制实现
- 谷歌浏览器正式版GoogleChrome for Mac v111.0.5563.64
- RAID设置流程解析 - SAS9460-8i 阵列卡的BIOS配置步骤
- Markdown写作 Ulysses for Mac v36.2
- 基于web的汽车零件销售管理系统的设计与实现毕业设计论文.doc
- Unity游戏开发教程:实现“吃金币”游戏的基本功能
- 基于javaweb的汽车租赁网站设计与实现.doc
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈