没有合适的资源?快使用搜索试试~ 我知道了~
物联网标准标准ipv6协议 This document updates RFC 4944, "Transmission of IPv6 Packets over IEEE 802.15.4 Networks". This document specifies an IPv6 header compression format for IPv6 packet delivery in Low Power Wireless Personal Area Networks (6LoWPANs)
资源推荐
资源详情
资源评论
Internet Engineering Task Force (IETF) J. Hui, Ed.
Request for Comments: 6282 Arch Rock Corporation
Updates: 4944 P. Thubert
Category: Standards Track Cisco
ISSN: 2070-1721 September 2011
Compression Format for IPv6 Datagrams
over IEEE 802.15.4-Based Networks
Abstract
This document updates RFC 4944, "Transmission of IPv6 Packets over
IEEE 802.15.4 Networks". This document specifies an IPv6 header
compression format for IPv6 packet delivery in Low Power Wireless
Personal Area Networks (6LoWPANs). The compression format relies on
shared context to allow compression of arbitrary prefixes. How the
information is maintained in that shared context is out of scope.
This document specifies compression of multicast addresses and a
framework for compressing next headers. UDP header compression is
specified within this framework.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc6282.
Hui & Thubert Standards Track [Page 1]
RFC 6282 IPv6 Datagrams on IEEE 802.15.4 September 2011
Copyright Notice
Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction ....................................................3
1.1. Requirements Language ......................................4
2. Specific Updates to RFC 4944 ....................................4
3. IPv6 Header Compression .........................................5
3.1. LOWPAN_IPHC Encoding Format ................................6
3.1.1. Base Format .........................................6
3.1.2. Context Identifier Extension .......................10
3.2. IPv6 Header Encoding ......................................11
3.2.1. Traffic Class and Flow Label Compression ...........11
3.2.2. Deriving IIDs from the Encapsulating Header ........12
3.2.3. Stateless Multicast Address Compression ............13
3.2.4. Stateful Multicast Address Compression .............14
4. IPv6 Next Header Compression ...................................15
4.1. LOWPAN_NHC Format .........................................15
4.2. IPv6 Extension Header Compression .........................15
4.3. UDP Header Compression ....................................17
4.3.1. Compressing UDP Ports ..............................17
4.3.2. Compressing UDP Checksum ...........................18
4.3.3. UDP LOWPAN_NHC Format ..............................20
5. IANA Considerations ............................................20
6. Security Considerations ........................................21
7. Acknowledgements ...............................................22
8. References .....................................................22
8.1. Normative References ......................................22
8.2. Informative References ....................................23
Hui & Thubert Standards Track [Page 2]
RFC 6282 IPv6 Datagrams on IEEE 802.15.4 September 2011
1. Introduction
The [IEEE802.15.4] standard specifies an MTU of 127 bytes, yielding
about 80 octets of actual Media Access Control (MAC) payload with
security enabled, on a wireless link with a link throughput of 250
kbps or less. The 6LoWPAN adaptation format [RFC4944] was specified
to carry IPv6 datagrams over such constrained links, taking into
account limited bandwidth, memory, or energy resources that are
expected in applications such as wireless sensor networks. [RFC4944]
defines a Mesh Addressing header to support sub-IP forwarding, a
Fragmentation header to support the IPv6 minimum MTU requirement
[RFC2460], and stateless header compression for IPv6 datagrams
(LOWPAN_HC1 and LOWPAN_HC2) to reduce the relatively large IPv6 and
UDP headers down to (in the best case) several bytes.
LOWPAN_HC1 and LOWPAN_HC2 are insufficient for most practical uses of
IPv6 in 6LoWPANs. LOWPAN_HC1 is most effective for link-local
unicast communication, where IPv6 addresses carry the link-local
prefix and an Interface Identifier (IID) directly derived from IEEE
802.15.4 addresses. In this case, both addresses may be completely
elided. However, though link-local addresses are commonly used for
local protocol interactions such as IPv6 Neighbor Discovery
[RFC4861], DHCPv6 [RFC3315], or routing protocols, they are usually
not used for application-layer data traffic, so the actual value of
this compression mechanism is limited.
Routable addresses must be used when communicating with devices
external to the 6LoWPAN or in a route-over configuration where IP
forwarding occurs within the 6LoWPAN. For routable addresses,
LOWPAN_HC1 requires both IPv6 source and destination addresses to
carry the prefix in-line. In cases where the Mesh Addressing header
is not used, the IID of a routable address must be carried in-line.
However, LOWPAN_HC1 requires 64 bits for the IID when carried in-line
and cannot be shortened even when it is derived from the IEEE
802.15.4 16-bit short address. When the destination is an IPv6
multicast address, LOWPAN_HC1 requires the full 128-bit address to be
carried in-line.
As a result, this document defines an encoding format, LOWPAN_IPHC,
for effective compression of Unique Local, Global, and multicast IPv6
Addresses based on shared state within contexts. In addition, this
document also introduces a number of additional improvements over the
header compression format defined in [RFC4944].
LOWPAN_IPHC allows for compression of some commonly used IPv6 Hop
Limit values. If the 6LoWPAN is a mesh-under stub, a Hop Limit of 1
for inbound and a default value such as 64 for outbound are usually
enough for application-layer data traffic. Additionally, a Hop Limit
Hui & Thubert Standards Track [Page 3]
RFC 6282 IPv6 Datagrams on IEEE 802.15.4 September 2011
value of 255 is often used to verify that a communication occurs over
a single-hop. This specification enables compression of the IPv6 Hop
Limit field in those common cases, whereas LOWPAN_HC1 does not.
This document also defines LOWPAN_NHC, an encoding format for
arbitrary next headers. LOWPAN_IPHC indicates whether the following
header is encoded using LOWPAN_NHC. If so, the bits immediately
following the compressed IPv6 header start the LOWPAN_NHC encoding.
In contrast, LOWPAN_HC1 could be extended to support compression of
next headers using LOWPAN_HC2, but only for UDP, TCP, and ICMPv6.
Furthermore, the LOWPAN_HC2 octet sits between the LOWPAN_HC1 octet
and uncompressed IPv6 header fields. This specification moves the
next header encoding bits to follow all IPv6-related bits, allowing
for a properly layered structure and direct support for IPv6
extension headers.
Using LOWPAN_NHC, this document defines a compression mechanism for
UDP. While [RFC4944] defines a compression mechanism for UDP, that
mechanism does not enable checksum compression when rendered possible
by additional upper-layer mechanisms such as upper-layer Message
Integrity Check (MIC). This specification adds the capability to
elide the UDP checksum over the 6LoWPAN, which enables saving of a
further two octets.
Also, using LOWPAN_NHC, this document defines encoding formats for
IPv6-in-IPv6 encapsulation as well as IPv6 Extension Headers. With
LOWPAN_HC1 and LOWPAN_HC2, chains of next headers cannot be encoded
efficiently.
1.1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
2. Specific Updates to RFC 4944
This document specifies a header compression format that is intended
to replace that defined in Section 10 of [RFC4944]. Implementation
of Section 10 of [RFC4944] is now NOT RECOMMENDED. New
implementations MAY implement decompression according to Section 10
of [RFC4944] but SHOULD NOT send packets compressed according to
Section 10 of [RFC4944].
A compliant implementation of [RFC4944] as updated by this document
MUST be able to properly process a packet received that makes use of
the provisions of this document. A compliant implementation MAY
implement additional LOWPAN_NHC types (Section 4) that may be
Hui & Thubert Standards Track [Page 4]
剩余23页未读,继续阅读
资源评论
zangchang
- 粉丝: 4
- 资源: 23
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功