没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
Sentiment Analysis and
Opinion Mining
April 22, 2012
Bing Liu
liub@cs.uic.edu
Draft: Due to copyediting, the published version is slightly different
Bing Liu. Sentiment Analysis and Opinion Mining, Morgan &
Claypool Publishers, May 2012.
Sentiment Analysis and Opinion Mining
2
Table of Contents
Preface ..............................................................................................5
Sentiment Analysis: A Fascinating Problem ...................................7
1.1 Sentiment Analysis Applications ..........................................8
1.2 Sentiment Analysis Research ..............................................10
1.2.1 Different Levels of Analysis ......................................................... 10
1.2.2 Sentiment Lexicon and Its Issues ................................................. 12
1.2.3 Natural Language Processing Issues ............................................. 13
1.3 Opinion Spam Detection .....................................................14
1.4 What’s Ahead ......................................................................14
The Problem of Sentiment Analysis ..............................................16
2.1 Problem Definitions ............................................................17
2.1.1 Opinion Defintion ......................................................................... 17
2.1.2 Sentiment Analysis Tasks ............................................................. 21
2.2 Opinion Summarization ......................................................24
2.3 Different Types of Opinions ................................................25
2.3.1 Regular and Comparative Opinions .............................................. 25
2.3.2 Explicit and Implicit Opinions ...................................................... 26
2.4 Subjectivity and Emotion ....................................................27
2.5 Author and Reader Standing Point ......................................29
2.6 Summary .............................................................................29
Document Sentiment Classification ...............................................30
3.1 Sentiment Classification Using Supervised Learning .........31
3.2 Sentiment Classification Using Unsupervised Learning .....34
3.3 Sentiment Rating Prediction ................................................36
3.4 Cross-Domain Sentiment Classification .............................38
3.5 Cross-Language Sentiment Classification ...........................41
3.6 Summary .............................................................................43
Sentence Subjectivity and Sentiment Classification ......................44
Sentiment Analysis and Opinion Mining
3
4.1 Subectivity Classification ....................................................45
4.2 Sentence Sentiment Classification ......................................49
4.3 Dealing with Conditional Sentences ...................................51
4.4 Dealing with Sarcastic Sentences ........................................52
4.5 Cross-language Subjectivity and Sentiment Classification .53
4.6 Using Discourse Information for Sentiment Classification 55
4.7 Summary .............................................................................56
Aspect-based Sentiment Analysis ..................................................58
5.1 Aspect Sentiment Classification ..........................................59
5.2 Basic Rules of Opinions and Compositional Semantics .....62
5.3 Aspect Extraction ................................................................67
5.3.1 Finding Frequent Nouns and Noun Phrases.................................. 68
5.3.2 Using Opinion and Target Relations ............................................ 71
5.3.3 Using Supervised Learning........................................................... 71
5.3.4 Using Topic Models ..................................................................... 73
5.3.5 Mapping Implicit Aspects ............................................................ 77
5.4 Identifying Resource Usage Aspect ....................................78
5.5 Simutaneous Opinion Lexicon Expansion and Aspect
Extraction ............................................................................79
5.6 Grouping Aspects into Categories .......................................81
5.7 Entity, Opinion Holder and Time Extraction ......................84
5.8 Coreference Resolution and Word Sense Disambiguation .86
5.9 Summary .............................................................................88
Sentiment Lexicon Generation ......................................................90
6.1 Dictionary-based Approach .................................................91
6.2 Corpus-based Approach ......................................................95
6.3 Desirable and Undesirable Facts .........................................99
6.4 Summary ...........................................................................100
Opinion Summarization ...............................................................102
7.1 Aspect-based Opinion Summarization ..............................102
7.2 Improvements to Aspect-based Opinion Summarization ..105
7.3 Contrastive View Summarization .....................................107
7.4 Traditional Summarization ................................................108
7.5 Summary ...........................................................................108
Sentiment Analysis and Opinion Mining
4
Analysis of Comparative Opinions ..............................................110
8.1 Problem Definitions ..........................................................110
8.2 Identify Comparative Sentences ........................................113
8.3 Identifying Preferred Entities ............................................115
8.4 Summary ...........................................................................117
Opinion Search and Retrieval ......................................................118
9.1 Web Search vs. Opinion Search ........................................118
9.2 Existing Opinion Retrieval Techniques ............................119
9.3 Summary ...........................................................................122
Opinion Spam Detection ..............................................................123
10.1 Types of Spam and Spamming ..........................................124
10.1.1 Harmful Fake Reviews ............................................................... 125
10.1.2 Individual and Group Spamming ................................................ 125
10.1.3 Types of Data, Features and Detection ....................................... 126
10.2 Supervised Spam Detection ...............................................127
10.3 Unsupervised Spam Detection ..........................................130
10.3.1 Spam Detection based on Atypical Behaviors ............................ 130
10.3.2 Spam Detection Using Review Graph ........................................ 133
10.4 Group Spam Detection ......................................................134
10.5 Summary ...........................................................................135
Quality of Reviews ......................................................................136
11.1 Quality as Regression Problem .........................................136
11.2 Other Methods ...................................................................138
11.3 Summary ...........................................................................140
Concluding Remarks ....................................................................141
Bibliography ................................................................................143
Sentiment Analysis and Opinion Mining
5
Preface
Opinions are central to almost all human activities and are key influencers of
our behaviors. Our beliefs and perceptions of reality, and the choices we
make, are, to a considerable degree, conditioned upon how others see and
evaluate the world. For this reason, when we need to make a decision we
often seek out the opinions of others. This is not only true for individuals but
also true for organizations.
Opinions and its related concepts such as sentiments, evaluations, attitudes,
and emotions are the subjects of study of sentiment analysis and opinion
mining. The inception and rapid growth of the field coincide with those of
the social media on the Web, e.g., reviews, forum discussions, blogs, micro-
blogs, Twitter, and social networks, because for the first time in human
history, we have a huge volume of opinionated data recorded in digital
forms. Since early 2000, sentiment analysis has grown to be one of the most
active research areas in natural language processing. It is also widely studied
in data mining, Web mining, and text mining. In fact, it has spread from
computer science to management sciences and social sciences due to its
importance to business and society as a whole. In recent years, industrial
activities surrounding sentiment analysis have also thrived. Numerous
startups have emerged. Many large corporations have built their own in-
house capabilities. Sentiment analysis systems have found their applications
in almost every business and social domain.
The goal of this book is to give an in-depth introduction to this fascinating
problem and to present a comprehensive survey of all important research
topics and the latest developments in the field. As evidence of that, this book
covers more than 400 references from all major conferences and journals.
Although the field deals with the natural language text, which is often
considered the unstructured data, this book takes a structured approach in
introducing the problem with the aim of bridging the unstructured and
structured worlds and facilitating qualitative and quantitative analysis of
opinions. This is crucial for practical applications. In this book, I first define
the problem in order to provide an abstraction or structure to the problem.
From the abstraction, we will naturally see its key sub-problems. The
subsequent chapters discuss the existing techniques for solving these sub-
problems.
This book is suitable for students, researchers, and practitioners who are
interested in social media analysis in general and sentiment analysis in
particular. Lecturers can readily use it in class for courses on natural
剩余167页未读,继续阅读
资源评论
YONGHU33
- 粉丝: 0
- 资源: 4
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- cim-websocket
- TouchSocket-websocket
- ubuntu-ubuntu
- ABAQUS UMAT&VUMAT子程序二次开发实例源码Fortran DISP 材料损伤断裂弹塑性
- comsol介质阻挡放电DBD模型,可以得到电子数目密度和电子密度等分布
- 声子晶体声表面波光学特性
- 西门子1200博图程序冷却油泵PID控制系统,和多台油泵及水泵G120西门子变频器Modbud RTU通讯,画面采用西门子KTP700触摸屏,内有变频器参数 Modbus通讯报文详细讲解,PID带手动
- STM32F405_RAW-stm32cubemx
- 西门子1200 1500博途单部电梯程序,文件包含一个四层电梯程序,三个六层电梯程序,版本TIA16 仅一个六层电梯有触摸屏画面,程序仅限于用于参考对比 博图版本V15.1及以上
- Javascript-javascript
- 西门子1200PLC加KTP触摸屏画面博途程序案例,博图版本V16,程序具体为电池涂布机浆料输送系统新能源项目 程序结构分: 1.配料系统物料分配输送 2.模拟量转,监测
- 西门子S7-1500暖通空调冷水机组PLC程序案例, 硬件采用西门子1500CPU+ET200SP接口IO模块,HMI采用西门子触摸屏 程序采用SCL控制程序编程,系统水泵采用一用一备,通过程序实现
- 西门子200Smart加维纶触摸屏程序画面程序案例,项目内容为某制造企业疫苗车间控制系统,报告配液工艺,发酵工艺,纯化工艺及CIP清洗工艺控制 程序结构清晰,控制功能较多,包含模拟量,泵,PID,U
- stm32CubeMx_F429-stm32cubemx
- 51单片机8路抢答器(二)C程序、proteus仿真、报告 支持按键设置、LED数码管显示 支持按键设置开始、加分、减分、准备 1.八个按键分别表示1至8号选手 2当按下开始键后,从10秒开始倒计
- ModBus-stm32cubemx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功