matlab的基于遗传算法优化bp神经网络多输入多输出预测模型,有代码和EXCEL数据参考,精度还可以,直接运行即可,换数据OK。
这个程序是一个基于遗传算法优化的BP神经网络多输入两输出模型。下面我将对程序进行详细分析。
首先,程序读取了一个名为“数据.xlsx”的Excel文件,其中包含了输入数据和输出数据。输入数据存储在名为“input”的矩阵中,输出数据存储在名为“output”的矩阵中。
接下来,程序设置了训练数据和预测数据。训练数据包括前1900个样本,存储在名为“input_train”和“output_train”的矩阵中。预测数据包括剩余的样本,存储在名为“input_test”和“output_test”的矩阵中。
然后,程序对输入数据进行了归一化处理,将其归一化到[-1,1]的范围内。归一化后的数据存储在名为“inputn”和“outputn”的矩阵中,归一化的参数存储在名为“inputps”和“outputps”的结构体中。
接下来,程序定义了神经网络的节点个数。输入层节点个数为输入数据的列数,隐含层节点个数为10,输出层节点个数为输出数据的列数。
然后,程序构建了一个BP神经网络模型。模型使用了tansig和purelin两个传递函数,采用梯度下降法进行训练。网络的训练参数包括训练次数、学习速率、训练目标最小误差、显示频率、动量因子、最小性能梯度和最高失败次数。
接下来,程序使用遗传算法求解最佳参数。遗传算法的参数包括进化代数、种群规模、交叉概率和变异概率。程序首先初始化一个种群,然后进行进化操作,包括选择、交叉和变异。每一代种群中的染色体根据其适应度值进行排序,然后根据轮盘赌法选择新个体。选择后的种群经过交叉和变异操作得到下一代种群。最后,程序输出遗传算法的结果,包括适应度曲线和最佳个体的权值和阈值。
最后,程序使用优化后的BP神经网络进行训练和预测。训练数据经过归一化处理后,使用train函数进行训练。然后,程序对测试数据进行归一化处理,并使用sim函数进行预测。预测结果经过反归一化处理后,计算了预测误差,并绘制了预测结果的图形。
这个程序主要是用于解决多输入两输出的问题,应用在神经网络领域。它使用遗传算法优化了BP神经网络的参数,包括权值和阈值,以提高神经网络的性能。程序涉及到的知识点包括神经网络的构建、训练和预测,遗传算法的基本原理和操作。
以上文字仅供参考,具体更详细完整内容请移步下载区:下载网址:https://imgcs.cn/p/632809753171.html
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
matlab的基于遗传算法优化bp神经网络多输入多输出预测模型,有代码和EXCEL数据参考,精度还可以,直接运行即可,换数据OK。 这个程序是一个基于遗传算法优化的BP神经网络多输入两输出模型。下面我将对程序进行详细分析。 首先,程序读取了一个名为“数据.xlsx”的Excel文件,其中包含了输入数据和输出数据。输入数据存储在名为“input”的矩阵中,输出数据存储在名为“output”的矩阵中。 接下来,程序设置了训练数据和预测数据。训练数据包括前1900个样本,存储在名为“input_train”和“output_train”的矩阵中。预测数据包括剩余的样本,存储在名为“input_test”和“output_test”的矩阵中。 然后,程序对输入数据进行了归一化处理,将其归一化到[-1,1]的范围内。归一化后的数据存储在名为“inputn”和“outputn”的矩阵中,归一化的参数存储在名为“inputps”和“outputps”的结构体中。 接下来,程序定义了神经网络的节点个数。输入层节点个数为输入数据的列数,隐含层节点个数为10,输出层节点个数为输出数据的列数。 然
资源推荐
资源详情
资源评论
收起资源包目录
的基于遗传.zip (5个子文件)
的基于遗传算法优化神经网络多输.txt 2KB
2.jpg 56KB
1.jpg 138KB
的基于遗传算法优化神经网络多输入多输出预测.html 11KB
3.jpg 746KB
共 5 条
- 1
资源评论
yilmnctw
- 粉丝: 3
- 资源: 12
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功