clear all;
close all;
G=6.67*10^-11;
% The universal gravitational constant
m =
[1.989e30,3.5844e23,4.89868e24,5.974e24,6.5714e23,1.89854e27,5.68725e26,8.72204e25,1.02
753e26];
% An array of masses
n = length(m); Number_of_planets = n
% The number of masses
x_p =
[0,58340100000,1.07705e11,1.4959e11,2.27377e11,7.77868e11,1.42709e12,2.87512e12,4.4966
8e12];
% An array of x positions
y_p= [0,0,0,0,0,0,0,0,0];
% An array of y positions
x_v = [0,0,0,0,0,0,0,0,0];
% An array of x velocities
y_v = [0,47856.46,34961.72,29780,23883.56,12924.52,9618.94,6789.84,5419.96];
% An array of y velocities
T= 365*24*60*60;%(2*pi*G*m(1))/(x_v(1)^3);
dt=360*60*60*10;
colordef black;
ph = plot(x_p,y_p,'.','MarkerSize',30);
xlabel('distance(km)');
ylabel('distance(km)');
title('Planetary motion');
for a=0:dt:1000*T
%loop for all masses with respect to time
for k=1:n
%loop for individual masses calculating neccessary quantities
dx = x_p - x_p(k);
% difference in x positions
dy = y_p - y_p(k);
评论0