2018_2019学年度七年级数学上册第二章整式的加减2.2整式的加减2.2.2整式的加减同步练习新版新人教版201808114
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
【知识点详解】 1. **整式的基本概念**:整式是由常数、变量以及它们的乘积组成的代数表达式,如 `m`、`n`、`x^2`等。在整式加减中,同类项可以合并,即相同字母的指数相同的项。 2. **整式的加减法则**:对于同类项,我们可以直接相加或相减它们的系数,字母部分保持不变。例如,`3x^2`和`-2x^2`相加得到`x^2`。 3. **多项式的加减**:多项式是由多个单项式相加构成的,如`x^2 + 3x - 4`。在进行多项式的加减运算时,同样遵循同类项合并的原则。 4. **边长与周长的关系**:在几何问题中,长方形的周长等于两倍的长加上两倍的宽。例如,如果一边是`2a - b`,那么另一边可以通过周长公式计算出来。 5. **绝对值的处理**:绝对值表示数的非负值,所以在处理含有绝对值的整式时,需要考虑正负情况。例如,`|a - b|`表示`a - b`的非负值。 6. **代数式求值**:给定某些变量的值,可以代入代数式求解其值。例如,如果`a^2 + 2ab = -10`且`b^2 + 2ab = 16`,可以通过加法或减法求出其他代数式的值。 7. **行列式的定义与运算**:行列式是一种特殊的代数构造,用来表示矩阵的性质。给定一个二阶行列式,根据定义`ad - bc`计算其值。 8. **化简代数表达式**:通过分配律、结合律和交换律等代数规则,可以简化复杂的代数表达式,使其更简洁易读。 9. **代数式的恒等变形**:如果一个代数式经过一系列合法的运算步骤后依然等于自身,那么这个过程就是恒等变形。例如,错误地将`A - B`看作`A + B`,然后通过恒等变形找到原始的`A - B`。 10. **代数式在数轴上的应用**:数轴可以帮助理解代数表达式的值,特别是涉及绝对值的情况。在数轴上,绝对值表示数到零点的距离,因此可以帮助确定表达式的正负。 11. **周长的计算**:长方形的周长是四边之和,所以如果长是`3a`,宽是`2a - b`,周长是`2(3a + 2a - b)`。 12. **多项式的化简**:通过分配律和合并同类项,可以将`-2b - 2(a - b)`化简为`-2b - 2a + 2b`,进一步简化为`-2a`。 13. **几何与代数的结合**:蚂蚁爬过的总距离(水平距离加垂直距离)等于楼梯的周长加上竖直高度。 14. **代数方程的解**:给定一个方程`A + (2a^2 - b^2) = 3a^2 - 2b^2`,可以解出`A`的值。 15. **不含特定项的多项式**:若多项式中不含`xy`项,意味着`xy`项的系数为0,从而解出`a`的值,并化简多项式。 16. **绝对值的性质**:在数轴上,`|a - c|`表示`a`和`c`之间的距离,`|b - c|`表示`b`和`c`之间的距离,两者相减可得`a`和`b`之间的距离。 17. **代数式的替换**:如果`a - 3b = 3`,可以通过替换`6b + 2(4 - a)`中的`a`来求值。 18. **代数式的恒等性**:如果`2x^2 + 3x + 7 = 10`,则`6x^2 + 9x - 7`可以通过代数操作转化为`3 * (2x^2 + 3x + 7)` - 21。 19. **多项式的化简**:对多项式进行合并同类项的操作,例如`(1)`变为`-x^2y + 2xy^2`,`(2)`变为`6x^2 - 5x + 5`。 20. **代数式的求值**:首先化简代数式,然后将给定的`x`和`y`值代入求解。 21. **代数式的值与变量无关**:如果`A - 2B`的值不依赖于`x`,意味着`x`相关的项在化简后消失了,从而解出`y`的值。 22. **代数化简的错误检查**:小亮的化简过程中可能忽略了分配律的正确应用,需要重新检查并修正。 23. **绝对值的几何意义**:根据数轴上点的位置,可以确定绝对值的大小,进而化简含绝对值的表达式。 这些知识点涵盖了代数基本操作、几何应用、代数式求值、化简等多个方面,是七年级数学中整式加减部分的重点内容。学习这些知识有助于学生掌握基本的代数技巧,并能解决实际问题。
- 粉丝: 3814
- 资源: 59万+
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 虚拟电脑病毒无害无需资源
- 探索Python数据可视化:Matplotlib库的深入指南
- 全站数据爬取技术与实践:方法、代码与策略
- 微信自动抢红包APP.zip毕业设计参考学习资料
- 为 Wireshark 能使用纯真网络 IP 数据库(QQwry)而提供的格式转换工具.zip
- 音频格式转换工具.zip学习资料程序资源
- 自用固件,合并openwrt和immortalwrt编译AX6(刷机有风险).zip
- 最新GeoLite2-City.mmdb,GeoLite2-Country.mmdb打包下载
- 基于BootStrap + Springboot + FISCO-BCOS的二手物品交易市场系统.zip
- 使用Java语言编写的九格拼游戏,找寻下曾经小时候的记忆.zip