<div align="center">
<p>
<a href="https://github.com/ultralytics/assets/releases/tag/v8.2.0" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="YOLO Vision banner"></a>
</p>
[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [Türkçe](https://docs.ultralytics.com/tr/) | [Tiếng Việt](https://docs.ultralytics.com/vi/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/) <br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://codecov.io/github/ultralytics/ultralytics"><img src="https://codecov.io/github/ultralytics/ultralytics/branch/main/graph/badge.svg?token=HHW7IIVFVY" alt="Ultralytics Code Coverage"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
<a href="https://ultralytics.com/discord"><img alt="Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
[Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
We hope that the resources here will help you get the most out of YOLOv8. Please browse the YOLOv8 <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png" alt="YOLOv8 performance plots"></a>
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
## <div align="center">Documentation</div>
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
<details open>
<summary>Install</summary>
Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
```bash
pip install ultralytics
```
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart).
</details>
<details open>
<summary>Usage</summary>
### CLI
YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli) for examples.
### Python
YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
model.train(data="coco8.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
path = model.export(format="onnx") # export the model to ONNX format
```
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
</details>
### Notebooks
Ultralytics provides interactive notebooks for YOLOv8, covering training, validation, tracking, and more. Each notebook is paired with a [YouTube](https://youtube.com/ultralytics) tutorial, making it easy to learn and implement advanced YOLOv8 features.
| Docs
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
美国白蛾对我国农林业造成很大损失。假设某农场布设了美国白蛾诱捕器,实时传回诱捕器画面,传给一个计数系统对诱捕器中的美国白蛾进行计数。试开发这样的计数系统。可以通过以下步骤模拟真实场景: (1)搜索网上的美国白蛾图片,并进行标注。 (2)根据搜索到的图片,构造包含不同数量、且有不同程度重叠的美国白蛾群图片集。 (3)针对(2)中构造的美国白蛾群图片集,开发一个计数系统,能够对每张图片中的美国白蛾进行准确计数。
资源推荐
资源详情
资源评论
收起资源包目录
基于Python实现的美国白蛾数据集构造及美国白蛾计数系统源代码+项目文档+汇报PPT (2000个子文件)
README.md 36KB
README.md 13KB
README.md 7KB
README.md 7KB
README.md 5KB
readme.md 5KB
README.md 3KB
README.md 3KB
readme.md 3KB
README.md 2KB
README.md 2KB
README.md 2KB
README.md 1KB
README.md 624B
README.md 356B
计算机211-04-美国白蛾识别-巫璐璐.pptx 3.65MB
a.py 807B
nomalize_image.py 559B
trainval.txt 23KB
train.txt 20KB
val.txt 6KB
Hyphantria_cunea_353.txt 3KB
test.txt 3KB
Hyphantria_cunea_939.txt 3KB
Hyphantria_cunea_346.txt 2KB
Hyphantria_cunea_365.txt 2KB
Hyphantria_cunea_390.txt 2KB
val.txt 2KB
Hyphantria_cunea_968.txt 2KB
Hyphantria_cunea_712.txt 2KB
Hyphantria_cunea_876.txt 2KB
Hyphantria_cunea_526.txt 1KB
Hyphantria_cunea_578.txt 1KB
Hyphantria_cunea_790.txt 1KB
Hyphantria_cunea_579.txt 1KB
Hyphantria_cunea_367.txt 1KB
Hyphantria_cunea_745.txt 1KB
Hyphantria_cunea_376.txt 1KB
Hyphantria_cunea_377.txt 1KB
Hyphantria_cunea_118.txt 1KB
Hyphantria_cunea_395.txt 1KB
Hyphantria_cunea_772.txt 1KB
Hyphantria_cunea_1197.txt 1KB
Hyphantria_cunea_808.txt 938B
Hyphantria_cunea_1.txt 866B
Hyphantria_cunea_618.txt 763B
Hyphantria_cunea_351.txt 754B
Hyphantria_cunea_831.txt 739B
Hyphantria_cunea_476.txt 714B
Hyphantria_cunea_791.txt 687B
Hyphantria_cunea_977.txt 685B
Hyphantria_cunea_733.txt 631B
Hyphantria_cunea_5.txt 604B
Hyphantria_cunea_922.txt 559B
Hyphantria_cunea_421.txt 536B
Hyphantria_cunea_567.txt 529B
Hyphantria_cunea_374.txt 402B
Hyphantria_cunea_468.txt 401B
Hyphantria_cunea_1134.txt 401B
Hyphantria_cunea_924.txt 388B
Hyphantria_cunea_952.txt 377B
Hyphantria_cunea_408.txt 365B
Hyphantria_cunea_975.txt 320B
Hyphantria_cunea_111.txt 320B
Hyphantria_cunea_369.txt 309B
Hyphantria_cunea_322.txt 241B
Hyphantria_cunea_597.txt 240B
Hyphantria_cunea_134.txt 227B
Hyphantria_cunea_599.txt 217B
Hyphantria_cunea_514.txt 214B
Hyphantria_cunea_445.txt 162B
Hyphantria_cunea_277.txt 160B
Hyphantria_cunea_352.txt 160B
Hyphantria_cunea_99.txt 159B
Hyphantria_cunea_268.txt 159B
Hyphantria_cunea_256.txt 159B
Hyphantria_cunea_25.txt 158B
Hyphantria_cunea_613.txt 158B
Hyphantria_cunea_28.txt 158B
Hyphantria_cunea_89.txt 148B
Hyphantria_cunea_158.txt 147B
Hyphantria_cunea_1190.txt 147B
Hyphantria_cunea_82.txt 145B
Hyphantria_cunea_698.txt 143B
Hyphantria_cunea_1016.txt 135B
Hyphantria_cunea_66.txt 82B
Hyphantria_cunea_633.txt 82B
Hyphantria_cunea_241.txt 82B
Hyphantria_cunea_188.txt 82B
Hyphantria_cunea_96.txt 82B
Hyphantria_cunea_954.txt 82B
Hyphantria_cunea_916.txt 81B
Hyphantria_cunea_1248.txt 81B
Hyphantria_cunea_126.txt 81B
Hyphantria_cunea_114.txt 81B
Hyphantria_cunea_112.txt 81B
Hyphantria_cunea_1192.txt 81B
Hyphantria_cunea_276.txt 81B
Hyphantria_cunea_143.txt 81B
Hyphantria_cunea_512.txt 81B
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
yanglamei1962
- 粉丝: 2479
- 资源: 809
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功