---------------------------------------------------------------------------
If you use the source code, please cite the following paper:
@article{gonen11jmlr,
Author = {G\"{o}nen, Mehmet and Alpayd{\i}n, Ethem},
Journal = {Journal of Machine Learning Research},
Number = {Jul},
Pages = {2211--2268},
Title = {Multiple Kernel Learning Algorithms},
Volume = {12},
Year = {2011}}
---------------------------------------------------------------------------
You should first run the script "prepare.m" in order to add the necessary
folders to MATLAB's path.
---------------------------------------------------------------------------
Each classifier is implemented by three files: parameters (*_parameter.m),
train function (*_train.m), and test function (*_test.m).
---------------------------------------------------------------------------
There are two demo scripts showing how to train and to test the classifiers.
rbmksvm_demo.m => trains RBMKL (mean) on a toy data set
lmksvm_demo.m => trains LMKL (softmax) on a toy data set
---------------------------------------------------------------------------
Default optimizer is set to an SMO solver written in MATLAB. Optimizer can
be changed to LIBSVM or MOSEK after installing these packages. Please see
the demo scripts to learn how to change the default optimizer.
LIBSVM => http://www.csie.ntu.edu.tw/~cjlin/libsvm/
MOSEK => http://www.mosek.com/
---------------------------------------------------------------------------
The following list matches the algorithms used in the paper and the code
files provided.
SVM (best) => svm/svm_*.m
SVM (all) => svm/svm_*.m
RBMKL (mean) => rbmksvm/rbmksvm_*.m rul = 'mean'
RBMKL (product) => rbmksvm/rbmksvm_*.m rul = 'product'
ABMKL (conic) => abmksvm/abmksvm_*.m com = 'conic'
ABMKL (convex) => abmksvm/abmksvm_*.m com = 'convex'
ABMKL (ratio) => abmksvm/abmksvm_*.m com = 'ratio'
CABMKL (linear) => cabmksvm/cabmksvm_*.m com = 'linear'
CABMKL (conic) => cabmksvm/cabmksvm_*.m com = 'convex'
MKL(best) => mksvm/mksvm_*.m
SimpleMKL (best) => mksvm/mksvm_*.m
GMKL => gmksvm/gmksvm_*.m
GLMKL (p = 1) => glmksvm/glmksvm_*.m p = 1
GLMKL (p = 2) => glmksvm/glmksvm_*.m p = 2
NLMKL (p = 1) => nlmksvm/nlmksvm_*.m p = 1
NLMKL (p = 2) => nlmksvm/nlmksvm_*.m p = 2
LMKL (softmax) => lmksvm/lmksvm_*.m gat.type = 'linear_softmax'
LMKL (sigmoid) => lmksvm/lmksvm_*.m gat.type = 'linear_sigmoid'
---------------------------------------------------------------------------
没有合适的资源?快使用搜索试试~ 我知道了~
多核支持向量机
共72个文件
m:62个
ds_store:9个
txt:1个
5星 · 超过95%的资源 需积分: 50 136 下载量 25 浏览量
2013-09-02
13:07:26
上传
评论 6
收藏 49KB ZIP 举报
温馨提示
支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。它是一种监督式学习的方法,广泛应用于统计分类以及回归分析中。
资源推荐
资源详情
资源评论
收起资源包目录
81272180gonen_jmlr11_code.zip (72个子文件)
mkl
prepare.m 892B
glmksvm
glmksvm_train.m 3KB
glmksvm_test.m 776B
glmksvm_parameter.m 741B
svm
svm_parameter.m 691B
svm_train.m 1KB
.DS_Store 6KB
svm_test.m 496B
abmksvm
abmksvm_parameter.m 826B
abmksvm_train.m 5KB
abmksvm_test.m 780B
.DS_Store 12KB
nlmksvm
nlmksvm_train.m 4KB
nlmksvm_parameter.m 832B
nlmksvm_test.m 1KB
rbmksvm
rbmksvm_parameter.m 817B
rbmksvm_train.m 1KB
rbmksvm_test.m 799B
rbmksvm_demo.m 2KB
lmksvm
lmksvm_train.m 4KB
lmksvm_test.m 912B
lmksvm_demo.m 2KB
lmksvm_parameter.m 1KB
smksvm
smksvm_train.m 4KB
smksvm_parameter.m 752B
smksvm_test.m 767B
mksvm
mksvm_parameter.m 666B
mksvm_train.m 2KB
mksvm_test.m 756B
common
multikernel
pairwise_frobenius.m 260B
optimal_frobenius.m 150B
optimal_centered_frobenius.m 358B
optimal_alignment.m 211B
combination_rule.m 180B
pairwise_centered_frobenius.m 433B
pairwise_alignment.m 320B
data
normalize_data.m 104B
.DS_Store 6KB
binarize.m 62B
mean_and_std.m 286B
kernel
.DS_Store 6KB
kernel.m 2KB
get_kernel.m 2KB
solvers
smo_solver.m 2KB
.DS_Store 12KB
solve_mksvm.m 2KB
solve_svm.m 1KB
.DS_Store 12KB
gui
.DS_Store 6KB
read_config.m 1KB
locality
etas.m 823B
kernel_eta_sum.m 225B
gating_initial.m 459B
kernel_eta.m 199B
locality.m 538B
gradient
eta_gradient_gmk.m 199B
.DS_Store 6KB
eta_gradient_lmk.m 2KB
eta_gradient_smk.m 199B
eta_gradient_nlmk.m 270B
drawing
draw_gating_boundaries.m 3KB
draw_decision_function.m 2KB
draw_data.m 2KB
.DS_Store 6KB
draw_support_vectors.m 4KB
cabmksvm
cabmksvm_parameter.m 832B
cabmksvm_train.m 3KB
cabmksvm_test.m 793B
gmksvm
gmksvm_train.m 4KB
gmksvm_test.m 772B
gmksvm_parameter.m 806B
readme.txt 3KB
共 72 条
- 1
ger12
- 粉丝: 1
- 资源: 1
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
- 1
- 2
前往页