We show how to use “complementary priors” to eliminate the explainingaway effects thatmake inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of thewake-sleep algorithm. After fine-tuning, a networkwith three hidden layers forms a very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The low-dimensional manifolds on which the digits lie are modeled by long ravines in the free-energy landscape of the top-level associative memory, and it is easy to explore these ravines by using the directed connections to displaywhat the associativememory has in mind.
剩余27页未读,继续阅读
- redlz25002023-03-28可以,恰到好处地有用
- 粉丝: 11
- 资源: 79
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 柯尼卡美能达Bizhub C364e打印机驱动下载
- CMake 入门实战的源代码
- c7383c5d0009dfc59e9edf595bb0bcd0.zip
- 柯尼卡美能达Bizhub C266打印机驱动下载
- java游戏之我当皇帝那些年.zip开发资料
- 基于Matlab的汉明码(Hamming Code)纠错传输以及交织编码(Interleaved coding)仿真.zip
- 中国省级新质生产力发展指数数据(任宇新版本)2010-2023年.txt
- 基于Matlab的2Q-FSK移频键控通信系统仿真.zip
- 使用C++实现的常见算法
- travel-web-springboot【程序员VIP专用】.zip