# Model List
Model List mainly includes Universal LLMs and Domain LLMs, In terms of Universal LLMs, including text generation model, image and video generation model, code generation model, music generation model, multimodal model;In terms of Domain LLMs, including law, medical, finance, environment, network security, education, Traffic and so on.
从GPT3到ChatGPT模型的发展路线图
![ChatGPT_family](https://i.postimg.cc/GtZmmjG2/chatgpt-3.jpg)
## LLM 体验效果
| Model_A| Model_B | Blog |
| --- | --- | --- |
| 360智脑 | 讯飞星火 | [对比效果](https://mp.weixin.qq.com/s?__biz=Mzg3NDIyMzI0Mw==&mid=2247486609&idx=2&sn=7fedb8ab37588d43968fdec2d7e5fcdd&chksm=ced54f75f9a2c663b9a2671f2548e2940730735605356cc0ffe72bc737470136a40032c80bfe&token=1282379489&lang=zh_CN#rd)|
| 阿里通义千问 | 讯飞星火 | [对比效果](https://mp.weixin.qq.com/s?__biz=Mzg3NDIyMzI0Mw==&mid=2247486534&idx=1&sn=6f36d41b618790cba62e63eb25bb033b&chksm=ced54fa2f9a2c6b4a901528f87a7e74628dfd79d835f4cdea1ee4dea442f339adfd2736b2305&token=1282379489&lang=zh_CN#rd)|
| Bard | Bing_VS_ChatGPT | [对比效果](https://www.theverge.com/2023/3/24/23653377/ai-chatbots-comparison-bard-bing-chatgpt-gpt-4)|
| baichuan-53B | ChatGLM-6B | [对比效果](https://mp.weixin.qq.com/s?__biz=Mzg3NDIyMzI0Mw==&mid=2247487325&idx=1&sn=561cb8b09c37ccfe0ed1f73de04b1db6&chksm=ced54cb9f9a2c5af30ac3d134086c955ac240f452cad0ab2b3708bc3cc09ef5b662b831c7d62&token=293446899&lang=zh_CN#rd)|
| 文心一言 | Bard | [对比效果](https://mp.weixin.qq.com/s?__biz=Mzg3NDIyMzI0Mw==&mid=2247486260&idx=1&sn=a41224fee7ed4cb4a48eb40a420d7479&chksm=ced548d0f9a2c1c6f4930f30447468f9f01bb2af6031368e302b13a6354fc4bca6636e3b297e&token=666852558&lang=zh_CN#rd)|
| 文心一言 | Baize-7B | [对比效果](https://mp.weixin.qq.com/s?__biz=Mzg3NDIyMzI0Mw==&mid=2247486317&idx=1&sn=ea3cc745d2991b8c657325392ce68f71&chksm=ced54889f9a2c19f3c2f85d8d7af7fff366027f79d1f4a5b2c650fea1b5dee9efde0b7c992ca&token=1173964254&lang=zh_CN#rd)|
| 文心一言 | OpenAssistant | [对比效果](https://mp.weixin.qq.com/s?__biz=Mzg3NDIyMzI0Mw==&mid=2247486413&idx=2&sn=3816e5a4bccceee5e2af868166b18897&chksm=ced54829f9a2c13fb787b7a7e3c2aa0799eb7ff6d124f6847349346146900e05684ceb8cc7f7&token=1282379489&lang=zh_CN#rd)|
| 文心一言 | ChatGLM-6B | [对比效果](https://mp.weixin.qq.com/s?__biz=Mzg3NDIyMzI0Mw==&mid=2247486081&idx=2&sn=fd87305419158d66dd4b05b57bee1324&chksm=ced54965f9a2c073ba1badfedbc6610036455cd769a3c8ee3445f7fbff9364b5624091be9914&token=666852558&lang=zh_CN#rd)|
| 文心一言 | GPT-4 | [对比效果](https://mp.weixin.qq.com/s/l1pTPlohMmiYEMc4x6QKhw)|
| 文心一言 | GPT-4实测 | [对比效果](https://mp.weixin.qq.com/s/uO8N3RpcrYU8rV1RkwBxzQ)|
| 文心一言 | 讯飞星火 | [对比效果](https://mp.weixin.qq.com/s?__biz=Mzg3NDIyMzI0Mw==&mid=2247486490&idx=1&sn=c8d756f7f26a4e35f8b67ae485efabce&chksm=ced54ffef9a2c6e8d66f8b744d6af524e320d5aec384d142621cee53fd2150f2c7db1fa7596a&token=1282379489&lang=zh_CN#rd)|
| GPT4 | ChatGPT | [对比效果](https://mp.weixin.qq.com/s?__biz=Mzg3NDIyMzI0Mw==&mid=2247485952&idx=2&sn=e54a62e358bf7aee3c007d59600fd452&chksm=ced549e4f9a2c0f2868eb8877c14fbe287a469e63b09774cefcb9edc4c0601016f6d36561973&token=666852558&lang=zh_CN#rd)|
| GPT4 | Claude2 | [对比效果1](https://mp.weixin.qq.com/s/dj2_WlWVpGwYsa8kO-GRFQ),[对比效果2](https://mp.weixin.qq.com/s/Xo3XXQ5zYPmDxBYivhBYqA)|
## baichuan Alternatives
| Target Model | Release Date | Source Model | Optimization | Checkpoints | Paper/Blog | Params (B) | Context Length | Code | Tokens | Tokenizer | Vocab size | Position Embedding | Layer Normalization | Activation Function | Attention |
| --- | --- | --- | --- |--- | --- | --- |--- | --- | --- | --- | --- | --- | --- | --- | --- |
| baichuan-7b | 2023/6/15 | | | [Model Scope](https://modelscope.cn/models/baichuan-inc/baichuan-7B/summary),[hugging face](https://huggingface.co/baichuan-inc/baichuan-7B) | [blog](https://mp.weixin.qq.com/s/qA_E_3dUe1sSOUM87ZgHdQ) | [7](https://github.com/ArronAI007/Awesome-AGI/tree/main/Model-List/model-params.md) | 4096 | [baichuan-7b Code](https://github.com/baichuan-inc/baichuan-7B),[baichuan-7b Demo](https://huggingface.co/baichuan-inc/baichuan-7B) |1.2T | BPE | 64000 | RoPE | Pre RMS Norm | SwiGLU | Flash-attention |
| baichuan-13b | 2023/7/11 | | | [hugging face Base](https://huggingface.co/baichuan-inc/Baichuan-13B-Base),[hugging face Chat](https://huggingface.co/baichuan-inc/Baichuan-13B-Chat),[modelscope Base](https://modelscope.cn/models/baichuan-inc/Baichuan-13B-Base),[modelscope Chat](https://modelscope.cn/models/baichuan-inc/Baichuan-13B-Chat) | [baichuan-13b blog](https://mp.weixin.qq.com/s/Px4h2r3VIAFI5vfjXxROxg),[百川大模型【Baichuan-13B】 多卡训练微调记录](https://mp.weixin.qq.com/s/EUZA6Lt-OcI170md9lXH1g) | [13](https://github.com/ArronAI007/Awesome-AGI/tree/main/Model-List/model-params.md) | 4096 | [baichuan-13b Code](https://github.com/baichuan-inc/Baichuan-13B) | 1.4T | | 64000 | ALiBi | RMSNorm | | Flash-attention |
| baichuan-53b | 2023/8/8 | | | | | 53(用于搜索) | | [baichuan Demo](https://chat.baichuan-ai.com/home) | | | | | | | |
| fireballoon/baichuan-vicuna-chinese-7b | | baichuan-7b | | | | | | | | | | | | | |
| fireballoon/baichuan-vicuna-7b | | baichuan-7b | | | | | | | | | | | | | |
| firefly-baichuan-7b-qlora-sft | | baichuan-7b | | | [blog](https://mp.weixin.qq.com/s/_eTkDGG5DmxyWeiQ6DIxBw),[Hugging Face model](https://huggingface.co/YeungNLP/firefly-baichuan-7b-qlora-sft),[Model Scope](https://modelscope.cn/models/baichuan-inc/baichuan-7B/summary),[C-EVAL](https://cevalbenchmark.com/static/leaderboard_zh.html) | | | [code](https://github.com/baichuan-inc/baichuan-7B) |
| baichuan-13b-Chat | | | | | [blog](https://mp.weixin.qq.com/s/wStOyHPd8c7V0ug1Qebryw) | | | [code](https://github.com/percent4/document_qa_with_llm) |
| Baichuan2 | | | | [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Intermediate-Checkpoints) | [Baichuan2技术报告](https://cdn.baichuan-ai.com/paper/Baichuan2-technical-report.pdf),[SuperCLUE评测效果](https://mp.weixin.qq.com/s/SV7COWNu9uGnpOBzVYCyog) | 7,13 | | [Baichuan2 Code](https://github.com/baichuan-inc/Baichuan2) | 2.6T | | | | | | |
| firefly-baichuan-13b | | baichuan-13b-base | QLoRA | | | | | | | | | | | | |
## ChatGLM Alternatives
| Model/Description| Paper | Code | Blog | Tokens | Tokenizer | Vocab size | Position Embedding | Layer Normalization | Activation Function | Attention |
| --- | --- | --- | --- |--- | --- | --- |--- | --- | --- | --- |
| ChatGLM-6B | | [code](https://github.com/THUDM/ChatGLM-6B.git) | [blog](https://chatglm.cn/blog),[ChatGLM-6B源码阅读](https://mp.weixin.qq.com/s/r7KEJmrpJZmY7KBP4veS6A),[ChatGLM模型底座细节分析](https://mp.weixin.qq.com/s/oOdD3MYtE6-sNeAmPthqLg) | 1T | SentencePiece | 130528 | | Post Deep Norm | GeLU |
| chatglm+langchain+互联网 | | [code](https://github.com/LemonQu-GIT/ChatGLM-6B-Engineering/) | [blog](https://mp.weixin.qq.com/s/lO6SrEuv4-vNbL8B3G-f8g) |
| ChatGLM_multi_gpu_zero_Tuning | | [code](https://github.com/CSHaitao/ChatGLM_mutli_gpu_tuning) | |
| ChatGLM+Fastapi | | | [blog](https://mp.weixin.qq.com/s/5J4UA4ePVZGXJGZsBXeN8Q) |
| ChatGLM2-6B-32K | | | [blog](https://mp.weixin.qq.com/s/Fkm_D26z1jrqA44B82v7Ww) | 1.4T | | 65024 | | Post RMS Norm | SwiGLU | GQA |
| ChatGLM-6b+langchain | | [code](https://github.com/yanqiangmiffy/Chinese-LangChain) | [blog](https://mp.weixin.qq.com/s/xAsZZ_LOkr9Nj-JafSbXnA) |
| one-shot微调chatglm-6b实践信息抽取 | | | [blog](https://mp.weixin.qq.com/s/l7lCbdJ9XGzLPTb3zKDAzQ) |
| Falcon | | | [blog1](https://mp.weixin.qq.com/s/jbRRjG2ferhFPWsMtCaJyg),[blog2](https://mp.weixin.qq.com/s/Vy_xWBuZU0
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
这里为你收集整理了关于AI,机器学习,深度学习相关的资料一份,质量非常高,如果你投入时间去研究几天相信肯定对你有很大的帮助。到时候你会回来感谢我的。 本资源是经过本地编译测试、可打开、可运行的文件或源码,可以用于毕业设计、课程设计的应用、参考和学习需求,请放心下载。 祝愿你在这个毕业设计项目中取得巨大进步,顺利毕业! 但强调一下,这些项目源码仅供学习和研究之用。在使用这些资源时,请务必遵守学术诚信原则和相关法律法规,不得将其用于任何商业目的或侵犯他人权益的行为。对于任何因使用本资源而导致的问题,包括但不限于数据丢失、系统崩溃或安全漏洞,风险自担!
资源推荐
资源详情
资源评论
收起资源包目录
AGI资料汇总学习(主要包括LLM和AIGC),持续更新.......zip (124个子文件)
out_openai_completion.csv 35KB
.DS_Store 14KB
.DS_Store 14KB
.DS_Store 8KB
.DS_Store 8KB
.DS_Store 8KB
.DS_Store 8KB
.DS_Store 8KB
.DS_Store 8KB
.DS_Store 8KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.gitignore 2KB
04_ActionNode.ipynb 3.08MB
01_blackjack_game.ipynb 1.35MB
05_Document_Assistant.ipynb 711KB
03_使用LangChain的三个函数来优化RAG.ipynb 706KB
01_使用Mistral_7b,_LangChain,_ChromaDB搭建自己的WEB聊天界面.ipynb 684KB
02_first_Agent.ipynb 660KB
baichuan-7B.ipynb 528KB
03_WeChat_subscrption_Agent.ipynb 469KB
02_使用LangChain和LangGraph大幅提升RAG效果.ipynb 346KB
5_Levels_Of_Text_Splitting.ipynb 329KB
使用_HC3_数据集来让_baichuan_7B_有对话能力.ipynb 275KB
Keyword_Extraction_with_Mistral_7B.ipynb 263KB
Agent 02| create Agent from scratch.ipynb 89KB
LLM之Generate中常见解码策略解读.ipynb 73KB
Agent-01| custom_tools.ipynb 64KB
fine tuning LLaMA2.ipynb 64KB
02 Product_Reviews_SQL+RAG.ipynb 36KB
LLM之Generate中参数解读.ipynb 29KB
01_使用LLaVA模型实现以文搜图和以图搜图.ipynb 21KB
04_语音控制.ipynb 21KB
01_Agent.ipynb 19KB
01_Prompt.ipynb 18KB
03_ChatBot.ipynb 14KB
01_Fine_Tune.ipynb 13KB
01_Model.ipynb 11KB
03_function_call.ipynb 9KB
baichuan-13B.ipynb 8KB
02_chat_completions.ipynb 8KB
02_LLM_predict.ipynb 8KB
01_构建新闻稿生成器.ipynb 8KB
06_moderations.ipynb 7KB
Complete Guide to LLM Fine Tuning for Beginners.ipynb 7KB
03_YouTube视频摘要(二).ipynb 6KB
02_YouTube视频摘要(一).ipynb 6KB
05_Completion.ipynb 6KB
01_helloworld.ipynb 5KB
04_output_JSON.ipynb 5KB
01_使用OpenAI_API_Keys的三种方式.ipynb 4KB
星火API.ipynb 4KB
baichuan API.ipynb 3KB
out_openai_completion_prepared.jsonl 40KB
README.md 42KB
README.md 34KB
README.md 15KB
blog.md 11KB
README.md 8KB
README.md 4KB
README.md 2KB
README.md 2KB
README.md 2KB
evaluation.md 613B
model-params.md 555B
README.md 374B
README.md 355B
README.md 355B
README.md 355B
fastllm.md 317B
huggingface.md 252B
README.md 187B
jittorllms.md 110B
共 124 条
- 1
- 2
资源评论
高校毕业设计
- 粉丝: 215
- 资源: 383
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 跨平台编程教育:少儿编程在线培训系统开发
- 知攻善防-应急响应靶机-web2.z25
- 知攻善防-应急响应靶机-web2.z23
- 知攻善防-应急响应靶机-web2.z24
- 数据库管理 Navicat Premium for Mac v17.1.8
- 信息融合项目matlab仿真代码及说明 针对杂波环境多目标跟踪问题,设计目标稀疏的目标运动场景,分别采用PDA和JPDA方法,对目标的状态进行有效估计和实时跟踪 以航迹丢失百分率,位置状态估计精度
- 知攻善防-应急响应靶机-web2.z26
- 知攻善防-应急响应靶机-web2.z27
- 知攻善防-应急响应靶机-web2.z28
- python上课PPT 算法2-列表查找.pptx
- 基于simulink的12 8开关磁阻电机电流斩波、角度位置调速控制、模型预测电流、转矩控制仿真程序
- 知攻善防-应急响应靶机-web2.z29
- 知攻善防-应急响应靶机-web2.z30
- 知攻善防-应急响应靶机-web2.z31
- 知攻善防-应急响应靶机-web2.z33
- 知攻善防-应急响应靶机-web2.z34
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功