### DOCUMENTATION
http://sippi.sourceforge.net/
http://sippi.sourceforge.net/sippi.pdf
http://sippi.sourceforge.net/htmldoc/
### INSTALL
#### Latest stable release
The simplest approach to start using SIPPI is to download the latest SIPPI package from http://sippi.sourceforge.net/
Simply download [SIPPI.zip](https://sourceforge.net/projects/sippi/files/latest/download?source=files), and unzip SIPPI.zip to a folder such as $SIPPI.
Then start Matlab and add the appropriate paths using
>> addpath $SIPPI
>> sippi_set_path
Please go to (http://sippi.sourceforge.net) for examples and details on how to use SIPPI.
#### Installation from github
The latest version of SIPPI can be downloaded from github. This is the version the developers use. The documentation is usually slightly outdated compared to the github version. The latest copy of SIPPI, including mGstat and MPSLIB, can be downloaded using (most users of SIPPI would need this):
cd INSTALL_DIR
git clone --recursive https://github.com/cultpenguin/sippi.git SIPPI
Then add a path to SIPPI
>> addpath INSTALL_DIR/SIPPI
>> sippi_set_path
To update SIPPI, including submodules (mGstat and MPSLIB) use
git pull --recurse-submodules
SIPPI, mGstat and MPSLIB can also be downloaded seperately (a develope weould probably prefer this) from github using
cd INSTALL_DIR
git clone --depth 1 https://github.com/cultpenguin/sippi.git SIPPI
git clone --depth 1 https://github.com/cultpenguin/mgstat.git SIPPI/toolboxes/mGstat
git clone --depth 1 https://github.com/ergosimulation/mpslib.git SIPPI/toolboxes/MPSLIB
Then add a path to both SIPPI, mGstat in Matlab using:
>> addpath INSTALL_DIR/SIPPI
>> addpath INSTALL_DIR/mGstat
>> addpath INSTALL_DIR/MPSLIB/matlab
>> sippi_set_path
See also https://www.gitbook.com/book/cultpenguin/sippi for more details on manual installation.
### DIRECTORIES :
**$SIPPI/**
SIPPI core m-files
**$SIPPI/plotting**
Directory containing m-files for plotting
**$SIPPI/data**
Currently only contains the data from ARRENAES described in the paper
**$SIPPI/toolboxes'**
+'fast_marching_kron' -> Fast marching toolbox by Dirk-Jan Kroon.
http://www.mathworks.com/matlabcentral/fileexchange/24531-accurate-fast-marching
+'mGstat' -> geostatistical toolbox for Matlab, by Thomas M Hansen and Knud S Cordua
http://github.com/cultpenguin/mgstat
+'MPSLIB' --> Multiple Point Statistics C++ library, https://github.com/ergosimulation/mpslib
+'tomography' -> A few m-files realated to the cross hole tomographic examples
**$SIPPI/examples/**
contains a number of example for using/running SIPPI
**$SIPPI/examples/prior_tests**
contains m-files used to generate samples from the prior pdf of a number
of different prior type models
**$SIPPI/examples/case_line_fit**
sippi_line_fit.m demonstrates fitting a straight lin, CASE 1 in the SIPPI manuscript
**$SIPPI/examples/tomography**
contains a number of examples of sampling the a posteriori pdf for
tomographic inverse problems, CASE 2 in the SIPPI manuscript
* using data AM13 (2D)
sippi_AM13_metropolis_gaussian.m: Metropolis sampling using Gaussian prior
sippi_AM13_metropolis_bimodal.m: Metropolis sampling using Gaussian prior / bimodal distribution
sippi_AM13_metropolis_uniform.m: Metropolis sampling using Gaussian prior / uniform distribution
sippi_AM13_rejection_gaussian.m: Rejection sampling using Gaussian prior
sippi_AM13_least_squares.m: Least squares inversion using Gaussian prior
* using data AM24 (2D)
sippi_AM24_gaussian.m: as sippi_AM13_metropolis_gaussian.m but for data set AM24
* using data AM1234 (3D)
sippi_AM1234_metropolis_gaussian.m : sippi_AM13_metropolis_gaussian.m but for data set AM1234
**$SIPPI/examples/covariance_inference**
- jura_covariance_inference:
Example of probabilistic covariance model parameter inference following
Hansen et al., 2015 - A general probabilistic approach for inference of Gaussian model parameters from noisy data of point and volume support.
doi:10.1007/s11004-014-9567-5
## Releases history
#v1.5 2016-08-18
Notice that V1.3 was packed without mGstat :/
MPSLIB (https://github.com/ergosimulation/mpslib) added for the first time (MPS based prior sampling, SNESIM and ENESIM type algorithms)
#v1.4 2016-02-01
Notice that V1.3 was packed without mGstat :/
So v1.4 is like V1.4 but repackaged properly with mGstat.
+ sippi_prior_plurigaussian added for the first time.
#v1.3
Added parallel tempering to sippi_metropolis
Many small bugfixes.
Testet with Matlab R2015b
#v1.2
Moving from SVN to GIT (on github)
#1.1.1 (01-12-2014) [rev 272]
Fixed bugh in sippi_get_sample that prevented most sippi_plot_posterior_* algorithms to wokr properly
#1.1 (20-11-2014) [rev 265]
Added consistency checks to sippi_prior_init
Seperated visim, sisim prior types into seperate m-files, sippi_prior_visim, sippi_prior_sisim
#1.03 (22-10-2014) [rev 240]
Removed the use of xcorr from signal processing toolbox
Update sippi_get_sample, and most sippi_plot_posterior_* routines
#1.02 (07-10-2014) [rev 235]
Bug fix (sippi_plot_posterior, prior{ip}.cax need not be set)
#1.01 (09-07-2014)
LUSIM type a priori model
UNIFORM type a priori model
bug fixes
#1.00 (09-07-2014)
Multiple updates,
* new figures
* Annealing type schedule for monte Carlo Sampling
* more example
* many bugfixes
* quantifying and accounting for modeling errors
#0.96 (12-03-2014)
Many updates for
sippi_metropolis
sippi_plot_prior
sippi_plot_posterior
#0.95
#0.94
Updates for handling prior types VISIM/SNESIM/FFTMA/SISIM
#0.93
Updates for plotting prior and posterior statistics (sippi_plot_prior, sippi_plot_posterior)
Updates for fft_ma for better 1D simulation
# 0.92
Fixed plotting of prior and posterior statistic for a scalar, 1D, 2D, and 3D a priori model types
# 0.90
Initial release
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。 Matlab(Matrix Laboratory)是一种专为数值计算和科学与工程应用而设计的高级编程语言和环境。在算法开发和实现方面,Matlab具有以下一些好处: 1. 丰富的数学和科学函数库:Matlab提供了广泛的数学、信号处理、图像处理、优化、统计等领域的函数库,这些函数库可以帮助开发者快速实现各种复杂的数值计算算法。这些函数库提供了许多常用的算法和工具,可以大大简化算法开发的过程。 2. 易于学习和使用:Matlab具有简单易用的语法和直观的编程环境,使得算法开发者可以更快速地实现和测试他们的算法。Matlab的语法与数学表达式和矩阵操作非常相似,这使得算法的表达更加简洁、清晰。 3. 快速原型开发:Matlab提供了一个交互式的开发环境,可以快速进行算法的原型开发和测试。开发者可以实时查看和修改变量、绘制图形、调试代码等,从而加快了算法的迭代和优化过程。这种快速原型开发的特性使得算法开发者可以更快地验证和修改他们的想法。 4. 可视化和绘图功能:Matlab具有强大的可视化和绘图功能,可以帮助开发者直观地展示和分析算法的结果。开发者可以使用Matlab绘制各种图形、曲线、图像,以及创建动画和交互式界面,从而更好地理解和传达算法的工作原理和效果。 5. 并行计算和加速:Matlab提供了并行计算和加速工具,如并行计算工具箱和GPU计算功能。这些工具可以帮助开发者利用多核处理器和图形处理器(GPU)来加速算法的计算过程,提高算法的性能和效率
资源推荐
资源详情
资源评论
收起资源包目录
用于对具有复杂先验的逆问题进行采样的Matlab工具箱(高分项目).zip (601个子文件)
pointmin.asv 1KB
make.bat 791B
sippi.bib 2KB
msfm3d.c 28KB
msfm3d.c 28KB
msfm2d.c 18KB
msfm2d.c 18KB
rk4.c 13KB
common.c 9KB
common.c 9KB
style.css 4KB
style_ubuntu.css 4KB
style_offline.css 3KB
thinnedti.dat 131KB
docbook.dtd 194KB
AM1234_data.eas 226KB
AM24_data.eas 84KB
AM13_data.eas 84KB
FDTD_forward.exe 129KB
FDTD_forward_glnxa64 76KB
FDTD_forward_maci64 100KB
sippi.fo 615KB
maze.gif 36KB
.gitignore 493B
.gitmodules 205B
matplotlib_doc.html 11KB
cover.jpg 1.29MB
book.json 291B
LICENSE 664B
sippi_AM13_nonGaussianModerlingError.m 25KB
sippi_metropolis.m 24KB
sippi_plot_posterior_sample.m 23KB
sippi_prior.m 20KB
twilight_shifted.m 18KB
twilight.m 18KB
sippi_metropolis_gibbs.m 17KB
fwi_execute.m 16KB
sippi_AM13_informed_proposal_sampling.m 15KB
sippi_prior_init.m 15KB
fwi_execute_parfor.m 14KB
sippi_metropolis_parfor.m 14KB
msfm2d_new.m 13KB
sippi_likelihood.m 12KB
sippi_AM13.m 12KB
sippi_forward_traveltime.m 12KB
write_parameters_to_screen.m 12KB
sippi_metropolis.m 11KB
msfm2d.m 11KB
msfm2d_org.m 11KB
msfm2d.m 11KB
gji_plot.m 10KB
sippi_least_squares.m 10KB
FDTD_fwi.m 10KB
kernel_finite_2d.m 10KB
sippi_likelihood_obsolete.m 10KB
LoadTraceM.m 10KB
sippi_prior_visim.m 10KB
viridis.m 9KB
inferno.m 9KB
plasma.m 9KB
magma.m 9KB
sippi_forward_mynn.m 9KB
sippi_metropolis_gibbs_random_iteration_2d.m 9KB
sippi_plot_posterior_data.m 9KB
sippi_plot_posterior_2d_marg.m 9KB
sippi_tikhonov.m 8KB
sippi_forward_covariance_inference.m 8KB
sippi_rejection.m 8KB
sippi_prior_snesim.m 8KB
cividis.m 8KB
sippi_prior_mps.m 8KB
multiESS.m 7KB
setup_input_parameters.m 7KB
prior_reals_mps_compare2.m 7KB
sippi_AM13_metropolis_mul.m 7KB
sippi_AM13_forward_compare.m 7KB
gji_nn.m 7KB
tomography_kernel.m 7KB
distribute_to_cores.m 7KB
sippi_metropolis_iteration.m 7KB
sippi_prior_voronoi.m 6KB
sippi_plot_prior_sample.m 6KB
sippi_prior_birthdeath.m 6KB
ray_kernel_2d.m 6KB
wiggle.m 6KB
sippi_forward_gpr_fd.m 6KB
sippi_plot_movie.m 6KB
sippi_forward_gaaem.m 6KB
skeleton.m 6KB
sippi_get_sample.m 6KB
sippi_compute_modelization_forward_error.m 6KB
simple_prior_models.m 6KB
kernel_buursink_2d.m 5KB
kernel_multiple.m 5KB
sippi_metropolis_gibbs_random_iteration.m 5KB
msfm.m 5KB
prior_reals_mps_compare.m 5KB
sippi_plot_prior.m 5KB
sippi_plot_posterior_mixing.m 5KB
fdem1dfwd.m 5KB
共 601 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7
资源评论
若明天不见
- 粉丝: 1w+
- 资源: 272
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- (源码)基于Spring Boot和Vue的后台管理系统.zip
- 用于将 Power BI 嵌入到您的应用中的 JavaScript 库 查看文档网站和 Wiki 了解更多信息 .zip
- (源码)基于Arduino、Python和Web技术的太阳能监控数据管理系统.zip
- (源码)基于Arduino的CAN总线传感器与执行器通信系统.zip
- (源码)基于C++的智能电力系统通信协议实现.zip
- 用于 Java 的 JSON-RPC.zip
- 用 JavaScript 重新实现计算机科学.zip
- (源码)基于PythonOpenCVYOLOv5DeepSort的猕猴桃自动计数系统.zip
- 用 JavaScript 编写的贪吃蛇游戏 .zip
- (源码)基于ASP.NET Core的美术课程管理系统.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功