### DOCUMENTATION
http://sippi.sourceforge.net/
http://sippi.sourceforge.net/sippi.pdf
http://sippi.sourceforge.net/htmldoc/
### INSTALL
#### Latest stable release
The simplest approach to start using SIPPI is to download the latest SIPPI package from http://sippi.sourceforge.net/
Simply download [SIPPI.zip](https://sourceforge.net/projects/sippi/files/latest/download?source=files), and unzip SIPPI.zip to a folder such as $SIPPI.
Then start Matlab and add the appropriate paths using
>> addpath $SIPPI
>> sippi_set_path
Please go to (http://sippi.sourceforge.net) for examples and details on how to use SIPPI.
#### Installation from github
The latest version of SIPPI can be downloaded from github. This is the version the developers use. The documentation is usually slightly outdated compared to the github version. The latest copy of SIPPI, including mGstat and MPSLIB, can be downloaded using (most users of SIPPI would need this):
cd INSTALL_DIR
git clone --recursive https://github.com/cultpenguin/sippi.git SIPPI
Then add a path to SIPPI
>> addpath INSTALL_DIR/SIPPI
>> sippi_set_path
To update SIPPI, including submodules (mGstat and MPSLIB) use
git pull --recurse-submodules
SIPPI, mGstat and MPSLIB can also be downloaded seperately (a develope weould probably prefer this) from github using
cd INSTALL_DIR
git clone --depth 1 https://github.com/cultpenguin/sippi.git SIPPI
git clone --depth 1 https://github.com/cultpenguin/mgstat.git SIPPI/toolboxes/mGstat
git clone --depth 1 https://github.com/ergosimulation/mpslib.git SIPPI/toolboxes/MPSLIB
Then add a path to both SIPPI, mGstat in Matlab using:
>> addpath INSTALL_DIR/SIPPI
>> addpath INSTALL_DIR/mGstat
>> addpath INSTALL_DIR/MPSLIB/matlab
>> sippi_set_path
See also https://www.gitbook.com/book/cultpenguin/sippi for more details on manual installation.
### DIRECTORIES :
**$SIPPI/**
SIPPI core m-files
**$SIPPI/plotting**
Directory containing m-files for plotting
**$SIPPI/data**
Currently only contains the data from ARRENAES described in the paper
**$SIPPI/toolboxes'**
+'fast_marching_kron' -> Fast marching toolbox by Dirk-Jan Kroon.
http://www.mathworks.com/matlabcentral/fileexchange/24531-accurate-fast-marching
+'mGstat' -> geostatistical toolbox for Matlab, by Thomas M Hansen and Knud S Cordua
http://github.com/cultpenguin/mgstat
+'MPSLIB' --> Multiple Point Statistics C++ library, https://github.com/ergosimulation/mpslib
+'tomography' -> A few m-files realated to the cross hole tomographic examples
**$SIPPI/examples/**
contains a number of example for using/running SIPPI
**$SIPPI/examples/prior_tests**
contains m-files used to generate samples from the prior pdf of a number
of different prior type models
**$SIPPI/examples/case_line_fit**
sippi_line_fit.m demonstrates fitting a straight lin, CASE 1 in the SIPPI manuscript
**$SIPPI/examples/tomography**
contains a number of examples of sampling the a posteriori pdf for
tomographic inverse problems, CASE 2 in the SIPPI manuscript
* using data AM13 (2D)
sippi_AM13_metropolis_gaussian.m: Metropolis sampling using Gaussian prior
sippi_AM13_metropolis_bimodal.m: Metropolis sampling using Gaussian prior / bimodal distribution
sippi_AM13_metropolis_uniform.m: Metropolis sampling using Gaussian prior / uniform distribution
sippi_AM13_rejection_gaussian.m: Rejection sampling using Gaussian prior
sippi_AM13_least_squares.m: Least squares inversion using Gaussian prior
* using data AM24 (2D)
sippi_AM24_gaussian.m: as sippi_AM13_metropolis_gaussian.m but for data set AM24
* using data AM1234 (3D)
sippi_AM1234_metropolis_gaussian.m : sippi_AM13_metropolis_gaussian.m but for data set AM1234
**$SIPPI/examples/covariance_inference**
- jura_covariance_inference:
Example of probabilistic covariance model parameter inference following
Hansen et al., 2015 - A general probabilistic approach for inference of Gaussian model parameters from noisy data of point and volume support.
doi:10.1007/s11004-014-9567-5
## Releases history
#v1.5 2016-08-18
Notice that V1.3 was packed without mGstat :/
MPSLIB (https://github.com/ergosimulation/mpslib) added for the first time (MPS based prior sampling, SNESIM and ENESIM type algorithms)
#v1.4 2016-02-01
Notice that V1.3 was packed without mGstat :/
So v1.4 is like V1.4 but repackaged properly with mGstat.
+ sippi_prior_plurigaussian added for the first time.
#v1.3
Added parallel tempering to sippi_metropolis
Many small bugfixes.
Testet with Matlab R2015b
#v1.2
Moving from SVN to GIT (on github)
#1.1.1 (01-12-2014) [rev 272]
Fixed bugh in sippi_get_sample that prevented most sippi_plot_posterior_* algorithms to wokr properly
#1.1 (20-11-2014) [rev 265]
Added consistency checks to sippi_prior_init
Seperated visim, sisim prior types into seperate m-files, sippi_prior_visim, sippi_prior_sisim
#1.03 (22-10-2014) [rev 240]
Removed the use of xcorr from signal processing toolbox
Update sippi_get_sample, and most sippi_plot_posterior_* routines
#1.02 (07-10-2014) [rev 235]
Bug fix (sippi_plot_posterior, prior{ip}.cax need not be set)
#1.01 (09-07-2014)
LUSIM type a priori model
UNIFORM type a priori model
bug fixes
#1.00 (09-07-2014)
Multiple updates,
* new figures
* Annealing type schedule for monte Carlo Sampling
* more example
* many bugfixes
* quantifying and accounting for modeling errors
#0.96 (12-03-2014)
Many updates for
sippi_metropolis
sippi_plot_prior
sippi_plot_posterior
#0.95
#0.94
Updates for handling prior types VISIM/SNESIM/FFTMA/SISIM
#0.93
Updates for plotting prior and posterior statistics (sippi_plot_prior, sippi_plot_posterior)
Updates for fft_ma for better 1D simulation
# 0.92
Fixed plotting of prior and posterior statistic for a scalar, 1D, 2D, and 3D a priori model types
# 0.90
Initial release

若明天不见
- 粉丝: 1w+
- 资源: 272
最新资源
- Ubuntu 22.04.5 LTS 安装企业微信,(2025-02-17安装可行)
- 深入解读R语言实现的传染病传播模型源码:自由增长模型、SI、SIS与SIR模型原理及北京新冠数据预测应用,基于R语言的新冠传染病传播模型解读及实践:自由增长模型、SI模型、SIS模型、SIR模型之探讨
- 基于Matlab的LQR算法在车辆轨迹跟踪中的应用研究,基于Matlab的LQR算法在车辆轨迹跟踪中的应用研究,基于Matlab使用LQR实现车辆轨迹跟踪… ,基于Matlab; LQR; 车辆轨迹跟
- 糖尿病患者住院信息.zip
- Spring容器创建对象的三种方式:
- 电力系统有功无功协同优化模型:结合常规调度与新能源优化,借助Matlab+Yalmip+Cplex软件高效求解混合整数二阶锥规划问题,电力系统有功无功协同优化:MATLAB结合Yalmip与Cplex
- 西门子S7-200 Smart PLC与台达伺服电机协同控制:触摸屏驱动包装机夹袋至缝包机运动控制方案,西门子S7-200 Smart PLC与台达伺服电机协同控制:触摸屏驱动包装机夹袋至缝包机运动控
- 高效的六电池均衡管理系统,采用精准Buckboost电路,实现快速均衡与高精度充电,6电池精准均衡,高速BuckBoost电路设计,实现卓越性能与效率,6个电池均衡,buckboost电路,精度高,均
- Python-应用案例实现-人机猜拳游戏
- QQ交流频道(解压后查看).zip
- 感应电机异步电机模型预测磁链控制(MPFC)系统:优化定子磁链与成本函数的最小化输出策略,感应电机异步电机模型预测磁链控制(MPFC)系统:优化电压矢量以精准控制定子磁链,感应电机 异步电机模型预测磁
- 6.python-numpy2024-09-29.wmv
- 基于深度学习的复杂多变量预测:利用卷积神经网络与双向门控循环单元结合KDE实现精确区间概率预测-Matlab 2020及以上版本算法详解,基于CNN-BiGRU-KDE的区间预测模型:多变量单输出预
- C#使用NModbus4库创建Modbus TCP Slave(服务器)以及客户端简单通讯示例
- 锁相环(PLL)设计与进阶应用技术:理论与实践的完美结合,锁相环(PLL)设计与进阶探索:原理、方法及实际应用的深入剖析,锁相环PLL pll设计与进阶 ,核心关键词:锁相环(PLL); PLL设计与
- GPU加速AES算法的密码学应用:多工作流与T表性能测试实践,利用GPU加速AES算法的密码学实践:从源码到编译执行全流程解析,X00139-密码学利用gpu加速aes算法 源码文件: 测试gpu:
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈


