namespace ServiceRanking { /// <summary> /// Summary description for TF_IDFLib. /// </summary> public class TFIDFMeasure { private string[] _docs; private string[][] _ngramDoc; private int _numDocs=0; private int _numTerms=0; private ArrayList _terms; private int[][] _termFreq; private float[][] _termWeight; private int[] _maxTermFreq; private int[] _docFreq; public class TermVector { public static float ComputeCosineSimilarity(float[] vector1, float[] vector2) { if (vector1.Length != vector2.Length) throw new Exception("DIFER LENGTH"); float denom=(VectorLength(vector1) * VectorLength(vector2)); if (denom == 0F) return 0F; else return (InnerProduct(vector1, vector2) / denom); } public static float InnerProduct(float[] vector1, float[] vector2) { if (vector1.Length != vector2.Length) throw new Exception("DIFFER LENGTH ARE NOT ALLOWED"); float result=0F; for (int i=0; i < vector1.Length; i++) result += vector1[i] * vector2[i]; return result; } public static float VectorLength(float[] vector) { float sum=0.0F; for (int i=0; i < vector.Length; i++) sum=sum + (vector[i] * vector[i]); return (float)Math.Sqrt(sum); } } private IDictionary _wordsIndex=new Hashtable() ; public TFIDFMeasure(string[] documents) { _docs=documents; _numDocs=documents.Length ; MyInit(); } private void GeneratNgramText() { } private ArrayList GenerateTerms(string[] docs) { ArrayList uniques=new ArrayList() ; _ngramDoc=new string[_numDocs][] ; for (int i=0; i < docs.Length ; i++) { Tokeniser tokenizer=new Tokeniser() ; string[] words=tokenizer.Partition(docs[i]); for (int j=0; j < words.Length ; j++) if (!uniques.Contains(words[j]) ) uniques.Add(words[j]) ; } return uniques; } private static object AddElement(IDictionary collection, object key, object newValue) { object element=collection[key]; collection[key]=newValue; return element; } private int GetTermIndex(string term) { object index=_wordsIndex[term]; if (index == null) return -1; return (int) index; } private void MyInit() { _terms=GenerateTerms (_docs ); _numTerms=_terms.Count ; _maxTermFreq=new int[_numDocs] ; _docFreq=new int[_numTerms] ; _termFreq =new int[_numTerms][] ; _termWeight=new float[_numTerms][] ; for(int i=0; i < _terms.Count ; i++) { _termWeight[i]=new float[_numDocs] ; _termFreq[i]=new int[_numDocs] ; AddElement(_wordsIndex, _terms[i], i); } GenerateTermFrequency (); GenerateTermWeight(); } private float Log(float num) { return (float) Math.Log(num) ;//log2 } private void GenerateTermFrequency() { for(int i=0; i < _numDocs ; i++) { string curDoc=_docs[i]; IDictionary freq=GetWordFrequency(curDoc); IDictionaryEnumerator enums=freq.GetEnumerator() ; _maxTermFreq[i]=int.MinValue ; while (enums.MoveNext()) { string word=(string)enums.Key; int wordFreq=(int)enums.Value ; int termIndex=GetTermIndex(word); _termFreq [termIndex][i]=wordFreq; _docFreq[termIndex] ++; if (wordFreq > _maxTermFreq[i]) _maxTermFreq[i]=wordFreq; } } } private void GenerateTermWeight() { for(int i=0; i < _numTerms ; i++) { for(int j=0; j < _numDocs ; j++) _termWeight[i][j]=ComputeTermWeight (i, j); } } private float GetTermFrequency(int term, int doc) { int freq=_termFreq [term][doc]; int maxfreq=_maxTermFreq[doc]; return ( (float) freq/(float)maxfreq ); } private float GetInverseDocumentFrequency(int term) { int df=_docFreq[term]; return Log((float) (_numDocs) / (float) df ); } private float ComputeTermWeight(int term, int doc) { float tf=GetTermFrequency (term, doc); float idf=GetInverseDocumentFrequency(term); return tf * idf; } private float[] GetTermVector(int doc) { float[] w=new float[_numTerms] ; for (int i=0; i < _numTerms; i++) w[i]=_termWeight[i][doc]; return w; } public float GetSimilarity(int doc_i, int doc_j) { float[] vector1=GetTermVector (doc_i); float[] vector2=GetTermVector (doc_j); return TermVector.ComputeCosineSimilarity(vector1, vector2) ; } private IDictionary GetWordFrequency(string input) { string convertedInput=input.ToLower() ; Tokeniser tokenizer=new Tokeniser() ; String[] words=tokenizer.Partition(convertedInput); Array.Sort(words); String[] distinctWords=GetDistinctWords(words); IDictionary result=new Hashtable(); for (int i=0; i < distinctWords.Length; i++) { object tmp; tmp=CountWords(distinctWords[i], words); result[distinctWords[i]]=tmp; } return result; } private string[] GetDistinctWords(String[] input) { if (input == null) return new string[0]; else { ArrayList list=new ArrayList() ; for (int i=0; i < input.Length; i++) if (!list.Contains(input[i])) // N-GRAM SIMILARITY? list.Add(input[i]); return Tokeniser.ArrayListToArray(list) ; } } private int CountWords(string word, string[] words) { int itemIdx=Array.BinarySearch(words, word); if (itemIdx > 0) while (itemIdx > 0 && words[itemIdx].Equals(word)) itemIdx--; int count=0; while (itemIdx < words.Length && itemIdx >= 0) { if (words[itemIdx].Equals(word)) count++; itemIdx++; if (itemIdx < words.Length) if (!words[itemIdx].Equals(word)) break; } return count; } } }
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![ipynb](https://img-home.csdnimg.cn/images/20250102104920.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![package](https://csdnimg.cn/release/downloadcmsfe/public/img/package.f3fc750b.png)
![folder](https://csdnimg.cn/release/downloadcmsfe/public/img/folder.005fa2e5.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![folder](https://csdnimg.cn/release/downloadcmsfe/public/img/folder.005fa2e5.png)
![folder](https://csdnimg.cn/release/downloadcmsfe/public/img/folder.005fa2e5.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![folder](https://csdnimg.cn/release/downloadcmsfe/public/img/folder.005fa2e5.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/TXT.png)
![folder](https://csdnimg.cn/release/downloadcmsfe/public/img/folder.005fa2e5.png)
![folder](https://csdnimg.cn/release/downloadcmsfe/public/img/folder.005fa2e5.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/GIF.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/GIF.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![folder](https://csdnimg.cn/release/downloadcmsfe/public/img/folder.005fa2e5.png)
![folder](https://csdnimg.cn/release/downloadcmsfe/public/img/folder.005fa2e5.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/TXT.png)
- 1
![avatar](https://profile-avatar.csdnimg.cn/098e3cb8f78545e99c4b1b6dec5a16da_whm1275.jpg!1)
- 粉丝: 1
- 资源: 5
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助
![voice](https://csdnimg.cn/release/downloadcmsfe/public/img/voice.245cc511.png)
![center-task](https://csdnimg.cn/release/downloadcmsfe/public/img/center-task.c2eda91a.png)
最新资源
- 基于QCloudSOEXC框架的Objective-C智聆打分xcFrame下载源码
- 电压型虚拟同步发电机(VSG)离网仿真模型:涵盖双闭环控制、有功无功外环及虚拟阻抗技术,适用于MATLAB 2018及以上版本,电压型虚拟同步发电机(VSG)离网仿真模型:双闭环控制、虚拟阻抗技术及有
- 基于模型预测控制的混合动力汽车能量管理策略优化:结合车速预测模型与动态规划算法实现实时全局最优燃油经济性,模型预测控制(MPC)在混合动力汽车能量管理策略中的创新应用:结合车速预测模型与动态规划算法追
- 基于COMSOL移动网格方法的激光熔池流动数值模拟:探讨马兰戈尼对流等多因素综合影响,基于COMSOL移动网格法的激光熔池流动数值模拟研究:马兰戈尼对流等多因素探讨,基于comsol移动网格方法的激光
- 奇异小波时频分析:一种高效的多维信号处理方法(应用于金融时间序列、地震信号、语音信号等),一种基于MATLAB的奇异小波时频分析方法:一维时间序列信号处理的新算法 该算法适用于金融时间序列、地震信号
- 基于SSM框架的零食管理系统设计源码
- 基于AD9361的BPSK调制解调器演示:位同步、误码率测试与零中频架构实践,附Verilog代码,基于AD9361软件无线电平台的BPSK调制解调器与误码率测试Demo:零中频架构与FPGA驱动实现
- 《comsol石墨烯吸收器及其在Kubo模型下的性能研究》,编号031:深入探索comsol石墨烯吸收器与Kubo模型在物理现象中的实践应用,comsol石墨烯吸收器,Kubo模型 编号031 ,c
- 基于Vue框架的HBNU前端学习项目设计源码
- 基于风储虚拟惯量控制技术的四机两区系统调频仿真研究:快速仿真与频率特性优化(基于频域模型法,附文献及SOC特性分析),风储联合仿真:基于虚拟惯量和下垂控制的四机两区系统一次调频频率特性研究(快速仿真
- 基于Java语言的HBNU悠市项目期末设计源码
- 基于INFO-RBF回归算法的优化与实现:清晰注释的MATLAB程序(2019b版以上可用),基于INFO-RBF回归算法的优化与实现:清晰注释的MATLAB程序,适用于2019b及以上版本,INFO
- 基于Vue框架的JavaScript水资源APP端代码设计源码
- 基于随机配置网络SCN的Adaboost回归预测模型:多输入单输出,高效且可替换的预测方法,评价指标全面覆盖R2、MAE、MSE等 ,基于随机配置网络SCN的Adaboost回归预测模型:多输入单输出
- 基于CSS、Java、JavaScript、HTML的JSP项目设计源码合集
- 基于Java语言的录音系统设计源码
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback-tip](https://img-home.csdnimg.cn/images/20220527035111.png)
![dialog-icon](https://csdnimg.cn/release/downloadcmsfe/public/img/green-success.6a4acb44.png)
- 1
- 2
前往页