# -*- coding: utf-8 -*-
# module pyparsing.py
#
# Copyright (c) 2003-2019 Paul T. McGuire
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
__doc__ = \
"""
pyparsing module - Classes and methods to define and execute parsing grammars
=============================================================================
The pyparsing module is an alternative approach to creating and
executing simple grammars, vs. the traditional lex/yacc approach, or the
use of regular expressions. With pyparsing, you don't need to learn
a new syntax for defining grammars or matching expressions - the parsing
module provides a library of classes that you use to construct the
grammar directly in Python.
Here is a program to parse "Hello, World!" (or any greeting of the form
``"<salutation>, <addressee>!"``), built up using :class:`Word`,
:class:`Literal`, and :class:`And` elements
(the :class:`'+'<ParserElement.__add__>` operators create :class:`And` expressions,
and the strings are auto-converted to :class:`Literal` expressions)::
from pip._vendor.pyparsing import Word, alphas
# define grammar of a greeting
greet = Word(alphas) + "," + Word(alphas) + "!"
hello = "Hello, World!"
print (hello, "->", greet.parseString(hello))
The program outputs the following::
Hello, World! -> ['Hello', ',', 'World', '!']
The Python representation of the grammar is quite readable, owing to the
self-explanatory class names, and the use of '+', '|' and '^' operators.
The :class:`ParseResults` object returned from
:class:`ParserElement.parseString` can be
accessed as a nested list, a dictionary, or an object with named
attributes.
The pyparsing module handles some of the problems that are typically
vexing when writing text parsers:
- extra or missing whitespace (the above program will also handle
"Hello,World!", "Hello , World !", etc.)
- quoted strings
- embedded comments
Getting Started -
-----------------
Visit the classes :class:`ParserElement` and :class:`ParseResults` to
see the base classes that most other pyparsing
classes inherit from. Use the docstrings for examples of how to:
- construct literal match expressions from :class:`Literal` and
:class:`CaselessLiteral` classes
- construct character word-group expressions using the :class:`Word`
class
- see how to create repetitive expressions using :class:`ZeroOrMore`
and :class:`OneOrMore` classes
- use :class:`'+'<And>`, :class:`'|'<MatchFirst>`, :class:`'^'<Or>`,
and :class:`'&'<Each>` operators to combine simple expressions into
more complex ones
- associate names with your parsed results using
:class:`ParserElement.setResultsName`
- access the parsed data, which is returned as a :class:`ParseResults`
object
- find some helpful expression short-cuts like :class:`delimitedList`
and :class:`oneOf`
- find more useful common expressions in the :class:`pyparsing_common`
namespace class
"""
__version__ = "2.4.7"
__versionTime__ = "30 Mar 2020 00:43 UTC"
__author__ = "Paul McGuire <ptmcg@users.sourceforge.net>"
import string
from weakref import ref as wkref
import copy
import sys
import warnings
import re
import sre_constants
import collections
import pprint
import traceback
import types
from datetime import datetime
from operator import itemgetter
import itertools
from functools import wraps
from contextlib import contextmanager
try:
# Python 3
from itertools import filterfalse
except ImportError:
from itertools import ifilterfalse as filterfalse
try:
from _thread import RLock
except ImportError:
from threading import RLock
try:
# Python 3
from collections.abc import Iterable
from collections.abc import MutableMapping, Mapping
except ImportError:
# Python 2.7
from collections import Iterable
from collections import MutableMapping, Mapping
try:
from collections import OrderedDict as _OrderedDict
except ImportError:
try:
from ordereddict import OrderedDict as _OrderedDict
except ImportError:
_OrderedDict = None
try:
from types import SimpleNamespace
except ImportError:
class SimpleNamespace: pass
# version compatibility configuration
__compat__ = SimpleNamespace()
__compat__.__doc__ = """
A cross-version compatibility configuration for pyparsing features that will be
released in a future version. By setting values in this configuration to True,
those features can be enabled in prior versions for compatibility development
and testing.
- collect_all_And_tokens - flag to enable fix for Issue #63 that fixes erroneous grouping
of results names when an And expression is nested within an Or or MatchFirst; set to
True to enable bugfix released in pyparsing 2.3.0, or False to preserve
pre-2.3.0 handling of named results
"""
__compat__.collect_all_And_tokens = True
__diag__ = SimpleNamespace()
__diag__.__doc__ = """
Diagnostic configuration (all default to False)
- warn_multiple_tokens_in_named_alternation - flag to enable warnings when a results
name is defined on a MatchFirst or Or expression with one or more And subexpressions
(only warns if __compat__.collect_all_And_tokens is False)
- warn_ungrouped_named_tokens_in_collection - flag to enable warnings when a results
name is defined on a containing expression with ungrouped subexpressions that also
have results names
- warn_name_set_on_empty_Forward - flag to enable warnings whan a Forward is defined
with a results name, but has no contents defined
- warn_on_multiple_string_args_to_oneof - flag to enable warnings whan oneOf is
incorrectly called with multiple str arguments
- enable_debug_on_named_expressions - flag to auto-enable debug on all subsequent
calls to ParserElement.setName()
"""
__diag__.warn_multiple_tokens_in_named_alternation = False
__diag__.warn_ungrouped_named_tokens_in_collection = False
__diag__.warn_name_set_on_empty_Forward = False
__diag__.warn_on_multiple_string_args_to_oneof = False
__diag__.enable_debug_on_named_expressions = False
__diag__._all_names = [nm for nm in vars(__diag__) if nm.startswith("enable_") or nm.startswith("warn_")]
def _enable_all_warnings():
__diag__.warn_multiple_tokens_in_named_alternation = True
__diag__.warn_ungrouped_named_tokens_in_collection = True
__diag__.warn_name_set_on_empty_Forward = True
__diag__.warn_on_multiple_string_args_to_oneof = True
__diag__.enable_all_warnings = _enable_all_warnings
__all__ = ['__version__', '__versionTime__', '__author__', '__compat__', '__diag__',
'And', 'CaselessKeyword', 'CaselessLiteral', 'CharsNotIn', 'Combine', 'Dict', 'Each', 'Empty',
'FollowedBy', 'Forward', 'GoToColumn', 'Group', 'Keyword', 'LineEnd', 'LineStart', 'Literal',
'PrecededBy', 'MatchFirst', 'NoMatch', 'NotAny', 'OneOrMore', 'OnlyOnce', 'Optional', 'Or',
'ParseBaseException', 'ParseElementEnhance', 'Pars
没有合适的资源?快使用搜索试试~ 我知道了~
基于深度学习的知识追踪模型训练
共652个文件
py:565个
exe:24个
txt:9个
需积分: 5 7 下载量 45 浏览量
2024-01-21
13:23:06
上传
评论 1
收藏 12.09MB ZIP 举报
温馨提示
深度知识追踪(Deep Knowledge Tracing,DKT)是一种利用深度学习方法来对学生的学习进展进行建模和预测的技术。它通过分析学生在学习过程中的行为数据,如题目回答情况、作业完成情况等,来推断学生的知识水平和学习状态,并根据这些推断进行个性化的学习支持和反馈。 本项目采取TensorFlow大框架和LSTM结构训练,数据集来自公开数据集ASSITMENT,AUC到达了0.85。 DKT的核心思想是使用循环神经网络(Recurrent Neural Network,RNN)或其变种来建模学生的学习轨迹。通过将学生的历史行为序列作为输入,RNN能够从中提取出学生的知识状态和学习能力的隐含表示。然后,可以利用这个表示来进行知识水平预测、学习路径推荐、智能辅导等个性化学习支持。 DKT的应用领域包括在线教育、智能辅导系统、学习分析等。它可以帮助教师和教育机构更好地理解学生的学习过程和问题,提供个性化的学习资源和建议,从而提高学生的学习效果和成绩。同时,DKT也可以在学习分析领域中发挥作用,帮助研究人员深入了解学习过程和学生行为规律,推动教育研究和改革。
资源推荐
资源详情
资源评论
收起资源包目录
基于深度学习的知识追踪模型训练 (652个子文件)
activate 2KB
activate.bat 1016B
deactivate.bat 510B
pydoc.bat 24B
sysconfig.cfg 3KB
pyvenv.cfg 406B
ASSISTments_skill_builder_data.csv 78.84MB
python.exe 257KB
pythonw.exe 246KB
t64-arm.exe 177KB
w64-arm.exe 163KB
gui-arm64.exe 135KB
cli-arm64.exe 134KB
pip3.exe 104KB
pip.exe 104KB
pip-3.10.exe 104KB
pip3.10.exe 104KB
wheel3.exe 104KB
wheel-3.10.exe 104KB
wheel.exe 104KB
wheel3.10.exe 104KB
t64.exe 104KB
w64.exe 98KB
t32.exe 95KB
w32.exe 88KB
gui-64.exe 74KB
cli-64.exe 73KB
cli-32.exe 64KB
cli.exe 64KB
gui-32.exe 64KB
gui.exe 64KB
activate.fish 3KB
.gitignore 1KB
.gitignore 50B
.gitignore 42B
Deep-Knowledge-Tracing-master.iml 567B
INSTALLER 5B
INSTALLER 5B
INSTALLER 5B
DKT-checkpoint.ipynb 12KB
DKT.ipynb 12KB
LICENSE 1KB
LICENSE 1KB
README.md 3KB
METADATA 5KB
METADATA 4KB
METADATA 2KB
activate.nu 1KB
deactivate.nu 333B
cacert.pem 253KB
activate.ps1 2KB
distutils-precedence.pth 151B
_virtualenv.pth 18B
pyparsing.py 267KB
pyparsing.py 227KB
pyparsing.py 227KB
uts46data.py 197KB
langrussianmodel.py 128KB
more.py 115KB
html5parser.py 114KB
__init__.py 106KB
__init__.py 106KB
langbulgarianmodel.py 103KB
langthaimodel.py 101KB
langhungarianmodel.py 100KB
langgreekmodel.py 97KB
langhebrewmodel.py 96KB
langturkishmodel.py 94KB
tarfile.py 90KB
easy_install.py 84KB
constants.py 82KB
_tokenizer.py 75KB
util.py 66KB
locators.py 51KB
database.py 50KB
msvc.py 49KB
dist.py 49KB
distro.py 47KB
ccompiler.py 47KB
dist.py 42KB
wheel.py 42KB
idnadata.py 41KB
compat.py 41KB
package_index.py 39KB
metadata.py 38KB
fallback.py 37KB
connectionpool.py 37KB
package_finder.py 35KB
bdist_msi.py 35KB
models.py 34KB
six.py 34KB
six.py 34KB
securetransport.py 34KB
req_install.py 33KB
_inputstream.py 32KB
euctwfreq.py 31KB
build_ext.py 31KB
utils.py 31KB
big5freq.py 31KB
specifiers.py 30KB
共 652 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7
资源评论
与临溪
- 粉丝: 209
- 资源: 15
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- HTML黄色实用形式大学学生社团企业网站模板代码.zip
- HTML黄色实用形式法律咨询企业网站模板代码.zip
- HTML黄色实用形式电子产品商店企业网站模板代码.zip
- HTML黄色实用形式服装行业企业网站模板代码.zip
- HTML黄色实用形式房地产销售企业网站模板代码.zip
- HTML黄色实用形式工业建筑企业网站模板代码.zip
- HTML黄色实用形式个人旅行爱好企业网站模板代码.zip
- HTML黄色实用形式家政清洁服务企业网页模板代码.zip
- HTML黄色实用形式健身会所企业网站模板代码.zip
- HTML黄色实用形式开发人员企业网站模板代码.zip
- HTML黄色实用形式建筑施工管理企业网站模板代码.zip
- HTML黄色实用形式路桥设计企业网站代码.zip
- 使用Fluent进行船体CFD瞬态仿真
- HTML黄色实用形式旅游风景图片企业网站模板代码.zip
- HTML黄色实用形式梦想假期旅行企业网站模板代码.zip
- HTML黄色实用形式旅行酒店企业网页模板代码.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功