# 3D-RelNet: Joint Object and Relation Network for 3D prediction
![Teaser Image](https://nileshkulkarni.github.io/relative3d/resources/images/teaser.png)
## Demo and Pre-trained Models
Please check out the [interactive notebook suncg](demo/demo_suncg.ipynb), [interactive notebook nyu](demo/demo_nyu.ipynb) which shows reconstructions using the learned models. To run this, you'll first need to follow the [installation instructions](docs/installation.md) to download trained models and some pre-requisites.
## Training and Evaluating
To train or evaluate the (trained/downloaded) models, it is first required to [download the SUNCG dataset](https://github.com/shubhtuls/factored3d/blob/master/docs/suncg_data.md) and [preprocess the data](https://github.com/shubhtuls/factored3d/blob/master/docs/preprocessing.md) and download the splits [here](https://cmu.box.com/s/zd0mkzghishx7qa82yz0ubh1orts6bx4). Please see the detailed README files for [Training](docs/training.md) or [Evaluation](docs/evaluation.md) of models for subsequent instructions. *Please note that these splits are different than the splits used by [Factored3d](https://github.com/shubhtuls/factored3d)*
To train or evaluate on the NYUv2 dataset the (trained/downloaded) models, it is first required to [download the NYU dataset](https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html) and [preprocess the data](docs/preprocess_nyu.md) and download the splits [here](https://cmu.box.com/s/3igy99ghe0mxrdpmtynt209f4mpvaiac). Please see the detailed README files for [Training](docs/training.md) or [Evaluation](docs/evaluation.md) of models for subsequent instructions.
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
三维重建-通过推理3D物体之间关系来预测3D姿态以实现更好的三维重建-优质项目实战.zip (141个子文件)
roi_pooling.c 4KB
roi_pooling_cuda.c 3KB
scn2img.cpp 50KB
scn2img_original.cpp 48KB
roi_pooling_kernel.cu 9KB
Thumbs.db 14KB
roi_pooling_kernel.h 767B
roi_pooling_cuda.h 420B
roi_pooling.h 178B
temp-plot.html 2.67MB
demo_suncg.ipynb 462KB
demo_nyu.ipynb 368KB
loadjson.m 22KB
savejson.m 21KB
read_wobj_safe.m 14KB
get_scene_vox.m 6KB
precompute_edge_boxes.m 3KB
precompute_edge_boxes.m 3KB
precompute_scene_voxels.m 2KB
precompute_gt_bboxes.m 2KB
bboxOverlap.m 2KB
getFileNamesFromDirectory.m 1KB
fitGMM.m 760B
fit_mixture.m 364B
quatDist.m 301B
mkdirOptional.m 178B
globals.m 175B
volume_params.m 106B
nyu_proposals.mat 70KB
suncg_proposals.mat 14KB
baselines.md 10KB
training.md 3KB
installation.md 2KB
README.md 2KB
evaluation.md 1KB
preprocess_nyu.md 1010B
preprocess.md 280B
eval_set10.pdf 130KB
eval_set8.pdf 126KB
eval_set0.pdf 113KB
eval_set7.pdf 110KB
suncg_img.png 420KB
nyu_img.png 329KB
scale_variations.png 134KB
box3d.py 70KB
internet.py 70KB
gcnnet.py 70KB
box3d_crf.py 68KB
box3d.py 68KB
transformations.py 65KB
dwr.py 51KB
dwr.py 48KB
internet.py 46KB
internet_dwr.py 44KB
gcn_dwr.py 44KB
gcn.py 39KB
suncg_parse.py 37KB
oc_net.py 30KB
internet_dwr.py 26KB
gcn_dwr.py 26KB
demo_utils.py 26KB
utils.py 26KB
box3d.py 25KB
crf_utils.py 24KB
box3d.py 22KB
crf_create_potentials.py 21KB
dwr.py 20KB
dwr.py 19KB
loss_utils.py 17KB
suncg.py 17KB
internet.py 15KB
dwr_internet.py 15KB
gcn.py 15KB
dwr_gcn.py 15KB
nyu.py 15KB
gcn_net.py 11KB
train_utils.py 10KB
nyu_parse.py 10KB
interaction_net.py 9KB
tb_visualizer.py 7KB
common_blocks.py 7KB
visualizer.py 7KB
net_blocks.py 7KB
make_compare_html.py 6KB
convert_mat_to_coco.py 6KB
make_html.py 6KB
fit_mixtures.py 5KB
make_html2.py 5KB
pr_plots.py 5KB
make_html_only_images.py 5KB
adam.py 5KB
disp_net.py 5KB
test_utils.py 4KB
evaluate_detection.py 4KB
suncg_compare_results.py 4KB
voxelize_objects.py 3KB
logger.py 3KB
collect_results_for_paper.py 3KB
voxel_net.py 3KB
quatUtils.py 3KB
共 141 条
- 1
- 2
资源评论
__AtYou__
- 粉丝: 3506
- 资源: 2175
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功