# Tracking Objects as Points
Simultaneous object detection and tracking using center points:
![](readme/fig2.png)
## Abstract
Tracking has traditionally been the art of following interest points through space and time. This changed with the rise of powerful deep networks. Nowadays, tracking is dominated by pipelines that perform object detection followed by temporal association, also known as tracking-by-detection. In this paper, we present a simultaneous detection and tracking algorithm that is simpler, faster, and more accurate than the state of the art. Our tracker, CenterTrack, applies a detection model to a pair of images and detections from the prior frame. Given this minimal input, CenterTrack localizes objects and predicts their associations with the previous frame. That's it. CenterTrack is simple, online (no peeking into the future), and real-time. It achieves 67.3% MOTA on the MOT17 challenge at 22 FPS and 89.4% MOTA on the KITTI tracking benchmark at 15 FPS, setting a new state of the art on both datasets. CenterTrack is easily extended to monocular 3D tracking by regressing additional 3D attributes. Using monocular video input, it achieves 28.3% AMOTA@0.2 on the newly released nuScenes 3D tracking benchmark, substantially outperforming the monocular baseline on this benchmark while running at 28 FPS.
## Features at a glance
- One-sentence method summary: Our model takes the current frame, the previous frame, and a heatmap rendered from previous tracking results as input, and predicts the current detection heatmap as well as their offsets to centers in the previous frame.
- The model can be trained on still **image datasets** if videos are not available.
- Easily extends to monocular 3d object tracking, multi-category tracking, and pose tracking.
- State-of-the-art performance on MOT17, KITTI, and nuScenes monocular tracking benchmarks.
## Main results
### Pedestrian tracking on MOT17 test set
| Detection | MOTA | FPS |
|--------------|-----------|--------|
|Public | 61.5 | 22 |
|Private | 67.8 | 22 |
### 2D vehicle tracking on KITTI test set (with flip test)
| MOTA | FPS |
|-------------|--------|
| 89.44 | 15 |
### 3D tracking on nuScenes test set
| AMOTA @ 0.2 | AMOTA | FPS |
|---------------|---------|--------|
| 27.8 | 4.6 | 28 |
Besides benchmark evaluation, we also provide models for 80-category tracking and pose tracking trained on COCO. See the sample visual results below (Video files from [openpose](https://github.com/CMU-Perceptual-Computing-Lab/openpose) and [YOLO](https://pjreddie.com/darknet/yolov2/)).
<p align="center"> <img src='readme/coco_det.gif' align="center" height="230px"> </p>
<p align="center"> <img src='readme/coco_pose.gif' align="center" height="230px"> </p>
All models and details are available in our [Model zoo](readme/MODEL_ZOO.md).
## Installation
Please refer to [INSTALL.md](readme/INSTALL.md) for installation instructions.
## Use CenterTrack
We support demo for videos, webcam, and image folders.
First, download the models (By default, [nuscenes\_3d\_tracking](https://drive.google.com/file/d/1gPQFzqneDtT_PjJRRuyskRsNTRHXovw1) for monocular 3D tracking, [coco_tracking](https://drive.google.com/file/d/11DEfWa0TKYzNqY3CXR51WVvjMb4oRl08) for 80-category detection and
[coco_pose_tracking](https://drive.google.com/file/d/1yGFC_Q9wzSHL1d4eZW_44EBB2H42YKYt) for pose tracking)
from the [Model zoo](readme/MODEL_ZOO.md) and put them in `CenterNet_ROOT/models/`.
We provide a video clip from the [nuScenes dataset](https://www.nuscenes.org/?externalData=all&mapData=all&modalities=Any) in `videos/nuscenes_mini.mp4`.
To test monocular 3D tracking on this video, run
~~~
python demo.py tracking,ddd --load_model ../models/nuScenes_3Dtracking.pth --dataset nuscenes --pre_hm --track_thresh 0.1 --demo ../videos/nuscenes_mini.mp4 --test_focal_length 633
~~~
You will need to specify `test_focal_length` for monocular 3D tracking demo to convert the image coordinate system back to 3D.
The value `633` is half of a typical focal length (`~1266`) in nuScenes dataset in input resolution `1600x900`.
The mini demo video is in an input resolution of `800x448`, so we need to use a half focal length.
You don't need to set the `test_focal_length` when testing on the original nuScenes data.
If setup correctly, you will see an output video like:
<p align="center"> <img src='readme/nuscenes_3d.gif' align="center" height="230px"> </p>
Similarly, for 80-category tracking on images/ video, run:
~~~
python demo.py tracking --load_model ../models/coco_tracking.pth --demo /path/to/image/or/folder/or/video
~~~
If you want to test with person tracking models, you need to add `--num_class 1`:
~~~
python demo.py tracking --load_model ../models/mot17_half.pth --num_class 1 --demo /path/to/image/or/folder/or/video
~~~
For webcam demo, run
~~~
python demo.py tracking --load_model ../models/coco_tracking.pth --demo webcam
~~~
For monocular 3D tracking, run
~~~
python demo.py tracking,ddd --demo webcam --load_model ../models/coco_tracking.pth --demo /path/to/image/or/folder/or/video/or/webcam
~~~
Similarly, for pose tracking, run:
~~~
python demo.py tracking,multi_pose --load_model ../models/coco_pose.pth --demo /path/to/image/or/folder/or/video/or/webcam
~~~
The result for the example images should look like:
You can add `--debug 2` to visualize the heatmap and offset predictions.
To use this CenterTrack in your own project, you can
~~~
import sys
CENTERTRACK_PATH = /path/to/CenterTrack/src/lib/
sys.path.insert(0, CENTERTRACK_PATH)
from detector import Detector
from opts import opts
MODEL_PATH = /path/to/model
TASK = 'tracking' # or 'tracking,multi_pose' for pose tracking and 'tracking,ddd' for monocular 3d tracking
opt = opts().init('{} --load_model {}'.format(TASK, MODEL_PATH).split(' '))
detector = Detector(opt)
images = ['''image read from open cv or from a video''']
for img in images:
ret = detector.run(img)['results']
~~~
Each `ret` will be a list dict: `[{'bbox': [x1, y1, x2, y2], 'tracking_id': id, ...}]`
## Training on custom dataset
If you want to train CenterTrack on your own dataset, you can use `--dataset custom` and manually specify the annotation file, image path, input resolutions, and number of categories. You still need to create the annotation files in COCO format (referring to the many `convert_X_to_coco.py` examples in `tools`). For example, you can use the following command to train on our [mot17 experiment](experiments/mot17_half_sc.sh) without using the pre-defined mot dataset file:
~~~
python main.py tracking --exp_id mot17_half_sc --dataset custom --custom_dataset_ann_path ../data/mot17/annotations/train_half.json --custom_dataset_img_path ../data/mot17/train/ --input_h 544 --input_w 960 --num_classes 1 --pre_hm --ltrb_amodal --same_aug --hm_disturb 0.05 --lost_disturb 0.4 --fp_disturb 0.1 --gpus 0,1
~~~
## Benchmark Evaluation and Training
After [installation](readme/INSTALL.md), follow the instructions in [DATA.md](readme/DATA.md) to setup the datasets. Then check [GETTING_STARTED.md](readme/GETTING_STARTED.md) to reproduce the results in the paper.
We provide scripts for all the experiments in the [experiments](experiments) folder.
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
目标跟踪-基于目标中心点同时进行目标检测+目标跟踪算法实现-项目源码-优质项目实战.zip (157个子文件)
coco_det.gif 4.01MB
coco_pose.gif 2.91MB
nuscenes_3d.gif 2.5MB
.gitignore 160B
Makefile 56B
DATA.md 8KB
README.md 7KB
MODEL_ZOO.md 6KB
GETTING_STARTED.md 3KB
INSTALL.md 2KB
nuscenes_mini.mp4 1.17MB
fig2.png 537KB
evaluate_tracking.py 46KB
munkres.py 24KB
utils_kitti.py 24KB
generic_dataset.py 23KB
convert_nuScenes.py 23KB
dla.py 22KB
opts.py 21KB
debugger.py 20KB
dlav0.py 19KB
detector.py 17KB
dla.py 16KB
export_kitti.py 16KB
trainer.py 12KB
resdcn.py 10KB
resnet.py 9KB
nuscenes.py 9KB
image.py 8KB
test.py 7KB
mobilenet.py 7KB
decode.py 7KB
convert_kittitrack_to_coco.py 7KB
losses.py 6KB
dlaup.py 6KB
resnet.py 6KB
ddd_utils.py 5KB
data_parallel.py 5KB
eval_motchallenge.py 5KB
convert_mot_to_coco.py 5KB
tracker.py 5KB
msraup.py 4KB
coco.py 4KB
generic_network.py 4KB
kitti_tracking.py 4KB
kitti.py 4KB
demo.py 4KB
annot_bbox.py 4KB
mot.py 4KB
coco_hp.py 4KB
main.py 3KB
model.py 3KB
base_model.py 3KB
vis_tracking_mot.py 3KB
post_process.py 3KB
crowdhuman.py 3KB
utils.py 3KB
vis_tracking_kitti.py 2KB
logger.py 2KB
convert_mot_det_to_results.py 2KB
convert_crowdhuman_to_coco.py 2KB
convert_onnx.py 2KB
scatter_gather.py 1KB
custom_dataset.py 1KB
dataset_factory.py 813B
remove_optimizers.py 756B
utils.py 542B
mailpy.py 454B
setup.py 368B
_init_paths.py 234B
_init_paths.py 231B
__init__.py 0B
__init__.py 0B
nms.pyx 13KB
evaluate_trackingval_half.seqmap 525B
evaluate_tracking.seqmap 525B
evaluate_trackingtrain_2-2.seqmap 275B
evaluate_trackingtrain_1-2.seqmap 250B
mot17_half.sh 657B
mot17_fulltrain_sc.sh 632B
nuScenes_3Dtracking.sh 418B
mot17_fulltrain.sh 412B
kitti_fulltrain.sh 408B
kitti_half.sh 406B
coco_pose_tracking.sh 383B
kitti_half_sc.sh 376B
mot17_half_sc.sh 374B
coco_tracking.sh 361B
crowdhuman.sh 301B
nuScenes_3Ddetection_e140.sh 287B
get_mot_17.sh 218B
evaluate_tracking.seqmap.test 725B
evaluate_tracking.seqmap.training 525B
0019.txt 1.52MB
0020.txt 1.19MB
0019.txt 801KB
0019.txt 754KB
0009.txt 727KB
0020.txt 696KB
0001.txt 584KB
共 157 条
- 1
- 2
资源评论
__AtYou__
- 粉丝: 3513
- 资源: 2177
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 毕设和企业适用springboot人工智能客服系统类及大数据云平台源码+论文+视频.zip
- 毕设和企业适用springboot人工智能客服系统类及环保监控平台源码+论文+视频.zip
- 毕设和企业适用springboot人工智能客服系统类及电子商务优化平台源码+论文+视频.zip
- 毕设和企业适用springboot汽车电商类及直播流媒体平台源码+论文+视频.zip
- 毕设和企业适用springboot汽车电商类及智能图像识别系统源码+论文+视频.zip
- 毕设和企业适用springboot汽车管理类及AI语音识别平台源码+论文+视频.zip
- 毕设和企业适用springboot区域电商平台类及产品体验管理系统源码+论文+视频.zip
- 毕设和企业适用springboot区域电商平台类及仓储管理平台源码+论文+视频.zip
- 毕设和企业适用springboot区块链交易平台类及自动化测试平台源码+论文+视频.zip
- 毕设和企业适用springboot人工智能客服系统类及健身管理平台源码+论文+视频.zip
- 毕设和企业适用springboot人工智能客服系统类及教学资源共享平台源码+论文+视频.zip
- 毕设和企业适用springboot人工智能客服系统类及教育资源共享平台源码+论文+视频.zip
- 毕设和企业适用springboot汽车管理类及电力系统优化平台源码+论文+视频.zip
- 毕设和企业适用springboot汽车管理类及机器人平台源码+论文+视频.zip
- 毕设和企业适用springboot汽车管理类及IT资产管理平台源码+论文+视频.zip
- 毕设和企业适用springboot汽车管理类及机器学习平台源码+论文+视频.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功