function [model,b,X,Y] = trainlssvm(model,X,Y)
% Train the support values and the bias term of an LS-SVM for classification or function approximation
%
% >> [alpha, b] = trainlssvm({X,Y,type,gam,kernel_par,kernel,preprocess})
% >> model = trainlssvm(model)
%
% type can be 'classifier' or 'function estimation' (these strings
% can be abbreviated into 'c' or 'f', respectively). X and Y are
% matrices holding the training input and output data. The i-th
% data point is represented by the i-th row X(i,:) and Y(i,:). gam
% is the regularization parameter: for gam low minimizing of the
% complexity of the model is emphasized, for gam high, good fitting
% of the training data points is stressed. kernel_par is the
% parameter of the kernel; in the common case of an RBF kernel, a
% large sig2 indicates a stronger smoothing. The kernel_type
% indicates the function that is called to compute the kernel value
% (by default RBF_kernel). Other kernels can be used for example:
%
% >> [alpha, b] = trainlssvm({X,Y,type,gam,[d p],'poly_kernel'})
% >> [alpha, b] = trainlssvm({X,Y,type,gam,[] ,'lin_kernel'})
%
% The kernel parameter(s) are passed as a row vector, in the case
% no kernel parameter is needed, pass the empty vector!
%
% The training can either be proceeded by the preprocessing
% function ('preprocess') (by default) or not ('original'). The
% training calls the preprocessing (prelssvm, postlssvm) and the
% encoder (codelssvm) if appropiate.
%
% In the remainder of the text, the content of the cell determining
% the LS-SVM is given by {X,Y, type, gam, sig2}. However, the
% additional arguments in this cell can always be added in the
% calls.
%
% If one uses the object oriented interface (see also A.3.14), the training is done by
%
% >> model = trainlssvm(model)
% >> model = trainlssvm(model, X, Y)
%
% The status of the model checks whether a retraining is
% needed. The extra arguments X, Y allow to re-initialize the model
% with this new training data as long as its dimensions are the
% same as the old initiation.
%
% The training implementation:
%
% * The Matlab implementation: a straightforward implementation
% based on the matrix division '\' (lssvmMATLAB.m).
%
%
% This implementation allows to train a multidimensional output
% problem. If each output uses the same kernel type, kernel
% parameters and regularization parameter, this is
% straightforward. If not so, one can specify the different types
% and/or parameters as a row vector in the appropriate
% argument. Each dimension will be trained with the corresponding
% column in this vector.
%
% >> [alpha, b] = trainlssvm({X, [Y_1 ... Y_d],type,...
% [gam_1 ... gam_d], ...
% [sig2_1 ... sig2_d],...
% {kernel_1,...,kernel_d}})
%
% Full syntax
%
% 1. Using the functional interface:
%
% >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2})
% >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2,kernel})
% >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2,kernel,preprocess})
%
% Outputs
% alpha : N x m matrix with support values of the LS-SVM
% b : 1 x m vector with bias term(s) of the LS-SVM
% Inputs
% X : N x d matrix with the inputs of the training data
% Y : N x 1 vector with the outputs of the training data
% type : 'function estimation' ('f') or 'classifier' ('c')
% gam : Regularization parameter
% sig2 : Kernel parameter (bandwidth in the case of the 'RBF_kernel')
% kernel(*) : Kernel type (by default 'RBF_kernel')
% preprocess(*) : 'preprocess'(*) or 'original'
%
%
% * Using the object oriented interface:
%
% >> model = trainlssvm(model)
% >> model = trainlssvm({X,Y,type,gam,sig2})
% >> model = trainlssvm({X,Y,type,gam,sig2,kernel})
% >> model = trainlssvm({X,Y,type,gam,sig2,kernel,preprocess})
%
% Outputs
% model : Trained object oriented representation of the LS-SVM model
% Inputs
% model : Object oriented representation of the LS-SVM model
% X(*) : N x d matrix with the inputs of the training data
% Y(*) : N x 1 vector with the outputs of the training data
% type(*) : 'function estimation' ('f') or 'classifier' ('c')
% gam(*) : Regularization parameter
% sig2(*) : Kernel parameter (bandwidth in the case of the 'RBF_kernel')
% kernel(*) : Kernel type (by default 'RBF_kernel')
% preprocess(*) : 'preprocess'(*) or 'original'
%
% See also:
% simlssvm, initlssvm, changelssvm, plotlssvm, prelssvm, codelssvm
% Copyright (c) 2011, KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.be/sista/lssvmlab
%
% initialise the model 'model'
%
if (iscell(model)),
model = initlssvm(model{:});
end
%
% given X and Y?
%
%model = codelssvm(model);
eval('model = changelssvm(model,''xtrain'',X);',';');
eval('model = changelssvm(model,''ytrain'',Y);',';');
eval('model = changelssvm(model,''selector'',1:size(X,1));',';');
%
% no training needed if status = 'trained'
%
if model.status(1) == 't',
if (nargout>1),
% [alpha,b]
X = model.xtrain;
Y = model.ytrain;
b = model.b;
model = model.alpha;
end
return
end
%
% control of the inputs
%
if ~((strcmp(model.kernel_type,'RBF_kernel') && length(model.kernel_pars)>=1) ||...
(strcmp(model.kernel_type,'lin_kernel') && length(model.kernel_pars)>=0) ||...
(strcmp(model.kernel_type,'MLP_kernel') && length(model.kernel_pars)>=2) ||...
(strcmp(model.kernel_type,'poly_kernel')&& length(model.kernel_pars)>=1)),
% eval('feval(model.kernel_type,model.xtrain(1,:),model.xtrain(2,:),model.kernel_pars);model.implementation=''MATLAB'';',...
% 'error(''The kernel type is not valid or to few arguments'');');
elseif (model.steps<=0),
error('steps must be larger then 0');
elseif (model.gam<=0),
error('gamma must be larger then 0');
% elseif (model.kernel_pars<=0),
% error('sig2 must be larger then 0');
elseif or(model.x_dim<=0, model.y_dim<=0),
error('dimension of datapoints must be larger than 0');
end
%
% coding if needed
%
if model.code(1) == 'c', % changed
model = codelssvm(model);
end
%
% preprocess
%
eval('if model.prestatus(1)==''c'', changed=1; else changed=0;end;','changed=0;');
if model.preprocess(1) =='p' && changed,
model = prelssvm(model);
elseif model.preprocess(1) =='o' && changed
model = postlssvm(model);
end
% clock
tic;
%
% set & control input variables and dimensions
%
if (model.type(1) == 'f'), % function
dyn_pars=[];
elseif (model.type(1) == 'c'), % class
dyn_pars=[];
end
% only MATLAB
if size(model.gam,1)>1,
model.implementation='MATLAB';
end
%
% output dimension > 1...recursive call on each dimension
%
if model.y_dim>1,
if (length(model.kernel_pars)==model.y_dim || size(model.gam,2)==model.y_dim || numel(model.kernel_type,2)==model.y_dim)
disp('multidimensional output...');
model = trainmultidimoutput(model);
%
% wich output is wanted?
%
if (nargout>1),
X = model.xtrain;
Y = model.ytrain;
b = model.b;
model = model.alpha;
else
model.duration = toc;
model.status = 'trained';
end
return
end
end
%
% call lssvmMATLAB.m
%
model = lssvmMATLAB(model);
%
% wich output is wanted?
%
if (nargout>1),
X = model.xtrain;
Y = model.ytrain;
b = model.b;
model = model.alpha;
else
model.duration = toc;
model.status = 'trained';
没有合适的资源?快使用搜索试试~ 我知道了~
【LSSVM回归预测】天鹰算法优化最小二乘支持向量机数据回归预测【含Matlab源码 2469期】.zip
共19个文件
m:13个
xlsx:3个
png:2个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 5 浏览量
2024-06-23
09:30:41
上传
评论
收藏 148KB ZIP 举报
温馨提示
Matlab领域上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:ga_2d_box_packing_test_task.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除ga_2d_box_packing_test_task.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 **5 机器学习和深度学习方面** 卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
资源推荐
资源详情
资源评论
收起资源包目录
【LSSVM回归预测】天鹰算法优化最小二乘支持向量机数据回归预测【含Matlab源码 2469期】.zip (19个子文件)
【LSSVM回归预测】基于matlab天鹰算法优化最小二乘支持向量机数据回归预测【含Matlab源码 2469期】
trainlssvm.m 9KB
fobj.m 710B
lssvmMATLAB.m 2KB
initialization.m 2KB
initlssvm.m 3KB
postlssvm.m 5KB
data1.xlsx 48KB
1.xlsx 11KB
CalFit.m 95B
iris.data 3KB
AO.m 5KB
prelssvm.m 6KB
kernel_matrix.m 3KB
AOlssvm_prediction.m 3KB
数值.xlsx 15KB
2.png 27KB
simlssvm.m 6KB
22.png 36KB
mapminmax.m 5KB
共 19 条
- 1
资源评论
Matlab领域
- 粉丝: 3w+
- 资源: 3117
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功