clc
clear
%% 1.计算风速weibull分布
% 数据处理
tic
load data;
mu=mean(speed);%原始数据的统计参数
sigma=sqrt(var(speed));
% 计算威布尔分布参数
parmhat=wblfit(speed);
k=parmhat(2);
c=parmhat(1);
% k=(sigma/mu)^-1.086;
% c=mu/gamma(1+1/k);
% 威布尔分布拟合
[y,x]=hist(speed,ceil(max(speed)/0.5));%x是区间中心数,组距-1.5
prob1=y/8760/0.5;%计算原始数据概率密度 ,频数除以数据种数,除以组距
prob2=(k/c)*(x/c).^(k-1).*exp(-(x/c).^k);%威布尔分布
figure(1)
title('Weibull分布拟合图');
bar(x,prob1,1)
hold on
plot(x,prob2,'r')
legend('历史数据','Weibull拟合结果')
% legend('Weibull拟合结果')
hold off
save('result_weibull.mat')
toc
% c=cumsum(prob2)
% plot(x,c)
%% 2.ARMA模型预测风速
%
% clc
% clear
% load data
% mu=mean(speed);%原始数据的统计参数
% sigma=sqrt(var(speed));
%
% % 2.1数据标准化
% Stdspeed=(speed-mu)/sigma;
% % Stdspeed=iddata(Stdspeed);
% AIC=zeros(10,1);
% % for n=2:10
% for n=2:7
% sys=armax(Stdspeed,[n,n-1]);
% NoiseStd=sqrt(sys.NoiseVariance);
% e=normrnd(0,NoiseStd,8760,1);%产生白噪声序列[时序标号 对应时序的值]
% y=zeros(8760,1);%预测后的标准风速[时序标号 对应时序的值]
%
%
% % 2.2利用arma模型产生预测值,1-8760项
% y(1)=e(1);%第一项等于第一个噪声
% for i=2:n %2-n项通项公式一致
% y(i)=-sys.A(2:i)*y(i-1:-1:1)+sys.C(1:i)*e(i:-1:1);
% end
%
% for i=n+1:8760% n+1至8760项通项公式一致
% y(i)=-sys.A(2:n+1)*y(i-1:-1:i-n)+sys.C(1:n)*e(i:-1:i-n+1);
% end
%
% % 2.3计算AIC值
% % 计算残差
% s=0;
% for i=1:8760
% s=s+(Stdspeed(i)-y(i))^2;
% end
%
% AIC(n,1)=8760*log(s)+2*n;
% end
% [minAIC,optn]=min(AIC(2:7));%找到AIC最小的阶数
%
% % 2.3得到最优阶数,代入arma模型预测风速
% sys=armax(Stdspeed,[optn,optn-1]);
% Noise.Std=sqrt(sys.NoiseVariance);
% e=normrnd(0,Noise.Std,8760,1);%产生白噪声序列[时序标号 对应时序的值]
% y=zeros(8760,1);%预测后的标准风速[时序标号 对应时序的值]
%
%
%
% y(1)=e(1);%第一项等于第一个噪声
% for i=2:optn %2-n项通项公式一致
% y(i)=-sys.A(2:i)*y(i-1:-1:1)+sys.C(1:i)*e(i:-1:1);
% end
%
% for i=optn+1:8760% n+1至8760项通项公式一致
% y(i)=-sys.A(2:optn+1)*y(i-1:-1:i-optn)+sys.C(1:optn)*e(i:-1:i-optn+1);
% end
% % 得到预测值y后反变换为实际风速
% Simspeed=y*sigma+mu;
%
% % 计算arma预测风速的概率分布
% [count,x]=hist(Simspeed,ceil(max(Simspeed)/0.5));%x是区间中心数,组距0.5
% prob3=count/8760/0.5;%计算arma预测数据概率密度 ,频数除以数据种数,除以组距
%
% % 时序作图比较
% figure(4)
% plot(1:400,speed(1:400),'r-.',1:400,Simspeed(1:400),'b-');
% legend('实际风速','ARMA模拟风速');
% % 概率分布作图比较
% figure(5)
% bar(x,prob3,1)
% title('ARMA预测概率分布');
%
% save('result_arma.mat')
%% 2.ARMA模型预测风速
clc
clear
tic
load data
y=speed(1:300);
Data=y; %共300个数据
SourceData=Data(1:250,1); %前250个训练集
step=50; %后50个测试
TempData=SourceData;
TempData=detrend(TempData);%去趋势线
TrendData=SourceData-TempData;%趋势函数
%--------差分,平稳化时间序列---------
H=adftest(TempData);
difftime=0;
SaveDiffData=[];
while ~H
SaveDiffData=[SaveDiffData,TempData(1,1)];
TempData=diff(TempData);%差分,平稳化时间序列
difftime=difftime+1;%差分次数
H=adftest(TempData);%adf检验,判断时间序列是否平稳化
end
%---------模型定阶或识别--------------
u = iddata(TempData);
test = [];
for p=1:5 %自回归对应PACF,给定滞后长度上限p和q,一般取为T/10、ln(T)或T^(1/2),这里取T/10=12
for q=1:5 %移动平均对应ACF
m = armax(u,[p q]);
AIC = aic(m); %armax(p,q),计算AIC
test = [test;p q AIC];
end
end
for k=1:size(test,1)
if test(k,3) == min(test(:,3)) %选择AIC值最小的模型
p_test = test(k,1);
q_test = test(k,2);
break;
end
end
%------1阶预测-----------------
TempData=[TempData;zeros(step,1)];
n=iddata(TempData);
%m = armax(u(1:ls),[p_test q_test]); %armax(p,q),[p_test q_test]对应AIC值最小,自动回归滑动平均模型
m = armax(u,[p_test q_test]);
% -------------------------------------------
P1=predict(m,n,1);
PreR=P1.OutputData;
PreR=PreR';
Noise.std=sqrt(m.NoiseVariance);
e=normrnd(0,Noise.std,1,300);
for i=251:300
PreR(i)=-m.A(2:p_test+1)*PreR(i-1:-1:i-p_test)'+m.C(1:q_test+1)*e(i:-1:i-q_test)';
end
% -------------------------------------------
%----------还原差分-----------------
if size(SaveDiffData,2)~=0
for index=size(SaveDiffData,2):-1:1
PreR=cumsum([SaveDiffData(index),PreR]);
end
end
%-------------------预测趋势并返回结果----------------
mp1=polyfit([1:size(TrendData',2)],TrendData',1);
xt=[];
for j=1:step
xt=[xt,size(TrendData',2)+j];
end
TrendResult=polyval(mp1,xt);
PreData=TrendResult+PreR(size(SourceData',2)+1:size(PreR,2));
tempx=[TrendData',TrendResult]+PreR; % tempx为预测结果
plot(tempx,'r-.');
hold on
plot(Data,'b');
legend('ARMA拟合时序曲线','实际时序风速');
save('resultarma.mat');
toc
%% 2.计及风速和元件故障的风电场出力
% 2.1得到N台机组M状态的风电场出力模型
% 风速单位m/s ,切出功率单位MW
%
clc
clear
load result_weibull
Generator.Wind=struct('vin',3,'vout',25,'vr',15,'Pr',1.5,'FOR',0.028,'lamda',5,'mu',175.2);
N=10;
M=6;
% 风电功率转换函数
[~,k1,k2]=Power([],Generator);
StateWeibull=zeros(M,2);
for i=1:M
StateWeibull(i,1)=(i-1)/(M-1)*Generator.Wind.Pr;
if StateWeibull(i,1)==0
% StateWeibull(i,2)=1-exp(-(Vin/c)^k)+exp(-(Vout/c)^k))+
StateWeibull(i,2)=wblcdf((((2*i-1)/(2*M-2))*Generator.Wind.Pr-k2)/k1,c,k)+exp(-(Generator.Wind.vout/c)^k) ;
end
if StateWeibull(i,1)>0&&StateWeibull(i,1)<Generator.Wind.Pr
StateWeibull(i,2)=wblcdf((((2*i-1)/(2*M-2))*Generator.Wind.Pr-k2)/k1,c,k)-wblcdf((((2*i-3)/(2*M-2))*Generator.Wind.Pr-k2)/k1,c,k);
end
if StateWeibull(i,1)==Generator.Wind.Pr
StateWeibull(i,2)=wblcdf((Generator.Wind.Pr-k2)/k1,c,k)-wblcdf((((2*i-3)/(2*M-2))*Generator.Wind.Pr-k2)/k1,c,k);
end
end
% StateWeibull表示单台机组的6状态出力,StateWeibull6表示N台风机构成的风电场的6状态出力
StateWeibull6=[StateWeibull(:,1)*N StateWeibull(:,2)];
figure(2)
bar(StateWeibull6(:,1),StateWeibull6(:,2))
grid on
title('只计及风速Weibull分布的风电场6状态出力模型')
% 2.2计算N台风电机组运行状态
% StateRun=binornd(N,Generator.Wind.FOR,N,1);
StateFOR=[(0:N)' zeros(N+1,1)];
for i=1:length(StateFOR)
StateFOR(i,2)=binopdf(i-1,N,1-Generator.Wind.FOR);
end
% 2.3计算考虑FOR的风电场M状态出力模型(Weibull)
StateFORWeibull6=zeros(M,2);
for i=1:M
StateFORWeibull6(i,1)=(i-1)/(M-1)*Generator.Wind.Pr*N;
end
state=StateFOR(:,1)*StateWeibull(:,1)';
prob=StateFOR(:,2)*StateWeibull(:,2)';
[n,m]=size(state);
for i=1:n
for j=1:m
for k=1:M+1
if abs(state(i,j)-StateFORWeibull6(k,1))<=1/(2*M-2)*Generator.Wind.Pr*N
StateFORWeibull6(k,2)=StateFORWeibull6(k,2)+prob(i,j);
break
else
continue
end
end
end
end
figure(3)
bar(StateFORWeibull6(:,1),StateFORWeibull6(:,2));
grid on
title('计及元件随机故障的风电场6状态出力模型(Weibull分布)');
save('result_WindFarmOutput.mat')
%% 3.计算含风电场的发电系统可靠性指标(非序贯MC)
% 3.1 求出常规机组的出力模型,按类构成多状态模型
% RBTS发电系统中共有6类常规机组,%11台常规机组数据
% %2台5MW水电机组%% %1台10MW热电机组%% %4台20MW水电机组%% %1台20MW热电机组%% %1台40MW水电机组%% %2台40MW热电机组%
% Generator.Norm(数量 单机容量 FOR)
% Generator.Norm=[2 5 0.01
% 1 10 0.02
% 4 20 0.015
% 1 20 0.025
% 1 40 0.02
% 2 40 0.03];
%
% %StateNorm中每一个元胞表示一个类机组的多状态
% StateNorm=cell(1,length(Generator.Norm));
% State=[];
% for i=1:length(Generator.Norm)
% for j=1:Generator.Norm(i,1)+1
% % State[出力 概率]指某类机组多状态的二项分布概率
% State(j,:)=[(j-1)*Generator.Norm(i,2) binopdf(j-1,Generator.Norm(i,1),1-Generator.Norm(i,3))];
% end
% StateNorm{i}=State;
% end
% Gener
Matlab领域
- 粉丝: 3w+
- 资源: 3636
最新资源
- Matlab_IEEE TVT中ris辅助双功能雷达通信系统联合波形设计与无源波束形成的Matlab代码.zip
- Matlab_IEEE TIP 2020高被引论文MatLab.zip
- Matlab_IEEE图像处理论文的Matlab代码:一种用于真实世界图像去噪的盲像素级非局部方法.zip
- Matlab_kShape的Matlab实现.zip
- Matlab_KMeans用于大数据预处理和稀疏化的Matlab实现Aka KMeans.zip
- Matlab_ifforest异常检测代码Matlab版.zip
- Matlab_LTE turbo码的编码器和解码器的Matlab仿真.zip
- Matlab_Manopt是一个Matlab工具箱,用于优化流形.zip
- Matlab_Letswave 6 Matlab脑电信号处理工具箱.zip
- 内网渗透讲义-全干货2024最新内网渗透讲解
- 2025最新英特尔手册完整中文版
- 计算机面试+Java+面试刷题相关图片+作为图片
- Nuclei POC 12W+合集
- 基于Matlab实现DOA与频率联合估计算法仿真(源码).rar
- 2024网络安全十大创新方向
- 低功耗可配置架构中HEVC解码器优化研究与应用
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈