function Iout=affine_warp(Iin,M,mode)
% Affine transformation function (Rotation, Translation, Resize)
% This function transforms a volume with a 3x3 transformation matrix
%
% Iout=affine_warp(Iin,Minv,mode)
%
% inputs,
% Iin: The input image
% Minv: The (inverse) 3x3 transformation matrix
% mode: If 0: linear interpolation and outside pixels set to nearest pixel
% 1: linear interpolation and outside pixels set to zero
% (cubic interpolation only support by compiled mex file)
% 2: cubic interpolation and outsite pixels set to nearest pixel
% 3: cubic interpolation and outside pixels set to zero
%
% output,
% Iout: The transformed image
%
% example,
% % Read image
% I=im2double(imread('lenag2.png'))
% % Make a transformation matrix
% M=make_transformation_matrix([2 3],2,[1.0 1.1]);
% % Transform the image
% Iout=affine_warp(I,M,0)
% % Show the image
% figure, imshow(Iout);
%
% Function is written by D.Kroon University of Twente (February 2009)
% Make all x,y indices
[x,y]=ndgrid(0:size(Iin,1)-1,0:size(Iin,2)-1);
% Calculate center of the image
% mean= size(Iin)/2;
% Make center of the image coordinates 0,0
%xd=x-mean(1);
%yd=y-mean(2);
xd=x;
yd=y;
% Calculate the Transformed coordinates
Tlocalx = mean(1) + M(1,1) * xd + M(1,2) *yd + M(1,3) * 1;
Tlocaly = mean(2) + M(2,1) * xd + M(2,2) *yd + M(2,3) * 1;
switch(mode)
case 0
Interpolation='bilinear';
Boundary='replicate';
case 1
Interpolation='bilinear';
Boundary='zero';
case 2
Interpolation='bicubic';
Boundary='replicate';
otherwise
Interpolation='bicubic';
Boundary='zero';
end
Iout=image_interpolation(Iin,Tlocalx,Tlocaly,Interpolation,Boundary);
function Iout = image_interpolation(Iin,Tlocalx,Tlocaly,Interpolation,Boundary,ImageSize)
% This function is used to transform an 2D image, in a backwards way with an
% transformation image.
%
% Iout = image_interpolation(Iin,Tlocalx,Tlocaly,Interpolation,Boundary,ImageSize)
%
% inputs,
% Iin : 2D greyscale or color input image
% Tlocalx,Tlocaly : (Backwards) Transformation images for all image pixels
% Interpolation:
% 'nearest' - nearest-neighbor interpolation
% 'bilinear' - bilinear interpolation
% 'bicubic' - cubic interpolation; the default method
% Boundary:
% 'zero' - outside input image are implicilty assumed to be zero
% 'replicate' - Input array values outside the bounds of the array
% are assumed to equal the nearest array border value
% (optional)
% ImageSize: - Size of output image
% outputs,
% Iout : The transformed image
%
% Function is written by D.Kroon University of Twente (September 2010)
if(~isa(Iin,'double')), Iin=double(Iin); end
if(nargin<6), ImageSize=[size(Iin,1) size(Iin,2)]; end
if(ndims(Iin)==2), lo=1; else lo=3; end
switch(lower(Interpolation))
case 'nearest'
xBas0=round(Tlocalx);
yBas0=round(Tlocaly);
case 'bilinear'
xBas0=floor(Tlocalx);
yBas0=floor(Tlocaly);
xBas1=xBas0+1;
yBas1=yBas0+1;
% Linear interpolation constants (percentages)
tx=Tlocalx-xBas0;
ty=Tlocaly-yBas0;
perc0=(1-tx).*(1-ty);
perc1=(1-tx).*ty;
perc2=tx.*(1-ty);
perc3=tx.*ty;
case 'bicubic'
xBas0=floor(Tlocalx);
yBas0=floor(Tlocaly);
tx=Tlocalx-xBas0;
ty=Tlocaly-yBas0;
% Determine the t vectors
vec_tx0= 0.5; vec_tx1= 0.5*tx; vec_tx2= 0.5*tx.^2; vec_tx3= 0.5*tx.^3;
vec_ty0= 0.5; vec_ty1= 0.5*ty; vec_ty2= 0.5*ty.^2;vec_ty3= 0.5*ty.^3;
% t vector multiplied with 4x4 bicubic kernel gives the to q vectors
vec_qx0= -1.0*vec_tx1 + 2.0*vec_tx2 - 1.0*vec_tx3;
vec_qx1= 2.0*vec_tx0 - 5.0*vec_tx2 + 3.0*vec_tx3;
vec_qx2= 1.0*vec_tx1 + 4.0*vec_tx2 - 3.0*vec_tx3;
vec_qx3= -1.0*vec_tx2 + 1.0*vec_tx3;
vec_qy0= -1.0*vec_ty1 + 2.0*vec_ty2 - 1.0*vec_ty3;
vec_qy1= 2.0*vec_ty0 - 5.0*vec_ty2 + 3.0*vec_ty3;
vec_qy2= 1.0*vec_ty1 + 4.0*vec_ty2 - 3.0*vec_ty3;
vec_qy3= -1.0*vec_ty2 + 1.0*vec_ty3;
% Determine 1D neighbour coordinates
xn0=xBas0-1; xn1=xBas0; xn2=xBas0+1; xn3=xBas0+2;
yn0=yBas0-1; yn1=yBas0; yn2=yBas0+1; yn3=yBas0+2;
otherwise
error('image_interpolation:inputs','unknown interpolation method');
end
% limit indexes to boundaries
switch(lower(Interpolation))
case 'nearest'
check_xBas0=(xBas0<0)|(xBas0>(size(Iin,1)-1));
check_yBas0=(yBas0<0)|(yBas0>(size(Iin,2)-1));
xBas0=min(max(xBas0,0),size(Iin,1)-1);
yBas0=min(max(yBas0,0),size(Iin,2)-1);
case 'bilinear'
check_xBas0=(xBas0<0)|(xBas0>(size(Iin,1)-1));
check_yBas0=(yBas0<0)|(yBas0>(size(Iin,2)-1));
check_xBas1=(xBas1<0)|(xBas1>(size(Iin,1)-1));
check_yBas1=(yBas1<0)|(yBas1>(size(Iin,2)-1));
xBas0=min(max(xBas0,0),size(Iin,1)-1);
yBas0=min(max(yBas0,0),size(Iin,2)-1);
xBas1=min(max(xBas1,0),size(Iin,1)-1);
yBas1=min(max(yBas1,0),size(Iin,2)-1);
case 'bicubic'
check_xn0=(xn0<0)|(xn0>(size(Iin,1)-1));
check_xn1=(xn1<0)|(xn1>(size(Iin,1)-1));
check_xn2=(xn2<0)|(xn2>(size(Iin,1)-1));
check_xn3=(xn3<0)|(xn3>(size(Iin,1)-1));
check_yn0=(yn0<0)|(yn0>(size(Iin,2)-1));
check_yn1=(yn1<0)|(yn1>(size(Iin,2)-1));
check_yn2=(yn2<0)|(yn2>(size(Iin,2)-1));
check_yn3=(yn3<0)|(yn3>(size(Iin,2)-1));
xn0=min(max(xn0,0),size(Iin,1)-1);
xn1=min(max(xn1,0),size(Iin,1)-1);
xn2=min(max(xn2,0),size(Iin,1)-1);
xn3=min(max(xn3,0),size(Iin,1)-1);
yn0=min(max(yn0,0),size(Iin,2)-1);
yn1=min(max(yn1,0),size(Iin,2)-1);
yn2=min(max(yn2,0),size(Iin,2)-1);
yn3=min(max(yn3,0),size(Iin,2)-1);
end
Iout=zeros([ImageSize(1:2) lo]);
for i=1:lo; % Loop incase of RGB
Iin_one=Iin(:,:,i);
switch(lower(Interpolation))
case 'nearest'
% Get the intensities
intensity_xyz0=Iin_one(1+xBas0+yBas0*size(Iin,1));
% Set pixels outside the image
switch(lower(Boundary))
case 'zero'
intensity_xyz0(check_xBas0|check_yBas0)=0;
otherwise
end
% Combine the weighted neighbour pixel intensities
Iout_one=intensity_xyz0;
case 'bilinear'
% Get the intensities
intensity_xyz0=Iin_one(1+xBas0+yBas0*size(Iin,1));
intensity_xyz1=Iin_one(1+xBas0+yBas1*size(Iin,1));
intensity_xyz2=Iin_one(1+xBas1+yBas0*size(Iin,1));
intensity_xyz3=Iin_one(1+xBas1+yBas1*size(Iin,1));
% Set pixels outside the image
switch(lower(Boundary))
case 'zero'
intensity_xyz0(check_xBas0|check_yBas0)=0;
intensity_xyz1(check_xBas0|check_yBas1)=0;
intensity_xyz2(check_xBas1|check_yBas0)=0;
intensity_xyz3(check_xBas1|check_yBas1)=0;
otherwise
end
% Combine the weighted neighbour pixel intensities
Iout_one=intensity_xyz0.*perc0+intensity_xyz1.*perc1+intensity_xyz2.*perc2+intensity_xyz3.*perc3;
case 'bicubic'
% Get the intensities
Iy0x0=Iin_one(1+xn0+yn0*size(Iin,1));Iy0x1=Iin_one(1+xn1+yn0*size(Iin,1));
Iy0x2=Iin_one(1+xn2+yn0*size(Iin,1));Iy0x3=Iin_one(1+xn3+yn0*size(Iin,1));
Iy1x0=Iin_one(1+xn0+yn1*size(Iin,1));Iy1x1=Iin_one(1+xn1+yn1*size(Iin,1));
Iy1x2=Iin_one(1+xn2+yn1*size(Iin,1));
![avatar](https://profile-avatar.csdnimg.cn/f6819b692a8841f6a058b284bba25c7f_weixin_63266434.jpg!1)
![avatar-vip](https://csdnimg.cn/release/downloadcmsfe/public/img/user-vip.1c89f3c5.png)
Matlab领域
- 粉丝: 3w+
- 资源: 3882
最新资源
- 如何正确使用deepseek?99%的人都错了.zip
- 1000个DeepSeek神级提示词,让你轻松驾驭AI【赶紧收藏】.zip
- 3个DeepSeek隐藏玩法,99%的人都不知道!.zip
- X光手部小关节图像分类数据集(8000张图片).rar
- DeepSeek赋能职场-进阶(清华).7z
- DeepSeek从入门到精通(清华).7z
- 电气工程中X00110多机系统短路故障的时域仿真技术应用研究,X00110时域仿真技术:多机系统短路故障在电气工程领域的实际应用研究,X00110-多机系统短路故障后时域仿真技术在电气工程领域的应用
- DeepSeek+V3搭建个人知识库教程.zip
- Deepseek+V3从零基础到精通学习手册.zip
- DeepSeek+搞钱教程赚钱变现(0基础入门).zip
- DeepSeek+个万能公式.zip
- DeepSeek+实用万能提问模板.zip
- DeepSeek+提问攻略、使用实例和心得.zip
- DeepSeek-30个喂饭指令.zip
- DeepSeek+万能提问模板.zip
- DeepSeek-R1使用指南(简版).zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback-tip](https://img-home.csdnimg.cn/images/20220527035111.png)