function edge_ACO
%参考文献:"An Ant Colony Optimization Algorithm For Image Edge
close all; clear all; clc;
% 读入图像
filename = 'ant128';
raw=imread('ant.jpg');
img=rgb2gray(raw);
img = double(img)./255;
[nrow, ncol] = size(img);
subplot(2,3,1);
imshow(raw); %显示源图像
%公式(3.24.4)初始化
for nMethod = 2:5;
%四种不同的核函数, 参见式 (3.24.7)-(3.24.10)
%E: exponential; F: flat; G: gaussian; S:Sine; T:Turkey; W:Wave
fprintf('Image edge detection using ant colony.\nPlease wait......\n');
v = zeros(size(img));
v_norm = 0;
for rr =1:nrow
for cc=1:ncol
%定义像素团
temp1 = [rr-2 cc-1; rr-2 cc+1; rr-1 cc-2; rr-1 cc-1; rr-1 cc; rr-1 cc+1; rr-1 cc+2; rr cc-1];
temp2 = [rr+2 cc+1; rr+2 cc-1; rr+1 cc+2; rr+1 cc+1; rr+1 cc; rr+1 cc-1; rr+1 cc-2; rr cc+1];
temp0 = find(temp1(:,1)>=1 & temp1(:,1)<=nrow & temp1(:,2)>=1 & temp1(:,2)<=ncol & temp2(:,1)>=1 & temp2(:,1)<=nrow & temp2(:,2)>=1 & temp2(:,2)<=ncol);
temp11 = temp1(temp0, :);
temp22 = temp2(temp0, :);
temp00 = zeros(size(temp11,1));
for kk = 1:size(temp11,1)
temp00(kk) = abs(img(temp11(kk,1), temp11(kk,2))-img(temp22(kk,1), temp22(kk,2)));
end
if size(temp11,1) == 0
v(rr, cc) = 0;
v_norm = v_norm + v(rr, cc);
else
lambda = 10;
switch nMethod
case 1%'F'
temp00 = lambda .* temp00;
case 2%'Q'
temp00 = lambda .* temp00.^2;
case 3%'S'
temp00 = sin(pi .* temp00./2./lambda);
case 4%'W'
temp00 = sin(pi.*temp00./lambda).*pi.*temp00./lambda;
end
v(rr, cc) = sum(sum(temp00.^2));
v_norm = v_norm + v(rr, cc);
end
end
end
% 归一化
v = v./v_norm;
v = v.*100;
p = 0.0001 .* ones(size(img)); % 信息素函数初始化
%参数设置。
alpha = 1; %式(3.24.4)中的参数
beta = 0.1; %式(3.24.4)中的参数
rho = 0.1; %式(3.24.11)中的参数
%式(3.24.12)中的参数
phi = 0.05; %equation (12), i.e., (9) in IEEE-CIM-06
ant_total_num = round(sqrt(nrow*ncol));
% 记录蚂蚁的位置
ant_pos_idx = zeros(ant_total_num, 2);
% 初始化蚂蚁的位置
rand('state', sum(clock));
temp = rand(ant_total_num, 2);
ant_pos_idx(:,1) = round(1 + (nrow-1) * temp(:,1)); %行坐标
ant_pos_idx(:,2) = round(1 + (ncol-1) * temp(:,2)); %列坐标
search_clique_mode = '8'; %Figure 1
% 定义存储空间容量
if nrow*ncol == 128*128
A = 40;
memory_length = round(rand(1).*(1.15*A-0.85*A)+0.85*A);
elseif nrow*ncol == 256*256
A = 30;
memory_length = round(rand(1).*(1.15*A-0.85*A)+0.85*A);
elseif nrow*ncol == 512*512
A = 20;
memory_length = round(rand(1).*(1.15*A-0.85*A)+0.85*A);
end
ant_memory = zeros(ant_total_num, memory_length);
% 实施算法
if nrow*ncol == 128*128
% 迭代的次数
total_step_num = 300;
elseif nrow*ncol == 256*256
total_step_num = 900;
elseif nrow*ncol == 512*512
total_step_num = 1500;
end
total_iteration_num = 3;
for iteration_idx = 1: total_iteration_num
delta_p = zeros(nrow, ncol);
for step_idx = 1: total_step_num
delta_p_current = zeros(nrow, ncol);
for ant_idx = 1:ant_total_num
ant_current_row_idx = ant_pos_idx(ant_idx,1);
ant_current_col_idx = ant_pos_idx(ant_idx,2);
% 找出当前位置的邻域
if search_clique_mode == '4'
rr = ant_current_row_idx;
cc = ant_current_col_idx;
ant_search_range_temp = [rr-1 cc; rr cc+1; rr+1 cc; rr cc-1];
elseif search_clique_mode == '8'
rr = ant_current_row_idx;
cc = ant_current_col_idx;
ant_search_range_temp = [rr-1 cc-1; rr-1 cc; rr-1 cc+1; rr cc-1; rr cc+1; rr+1 cc-1; rr+1 cc; rr+1 cc+1];
end
%移除图像外的位置
temp = find(ant_search_range_temp(:,1)>=1 & ant_search_range_temp(:,1)<=nrow & ant_search_range_temp(:,2)>=1 & ant_search_range_temp(:,2)<=ncol);
ant_search_range = ant_search_range_temp(temp, :);
%计算概率转换函数
ant_transit_prob_v = zeros(size(ant_search_range,1),1);
ant_transit_prob_p = zeros(size(ant_search_range,1),1);
for kk = 1:size(ant_search_range,1)
temp = (ant_search_range(kk,1)-1)*ncol + ant_search_range(kk,2);
if length(find(ant_memory(ant_idx,:)==temp))==0 ant_transit_prob_v(kk) = v(ant_search_range(kk,1), ant_search_range(kk,2));
ant_transit_prob_p(kk) = p(ant_search_range(kk,1), ant_search_range(kk,2));
else
ant_transit_prob_v(kk) = 0;
ant_transit_prob_p(kk) = 0;
end
end
if (sum(sum(ant_transit_prob_v))==0) | (sum(sum(ant_transit_prob_p))==0)
for kk = 1:size(ant_search_range,1)
temp = (ant_search_range(kk,1)-1)*ncol + ant_search_range(kk,2);
ant_transit_prob_v(kk) = v(ant_search_range(kk,1), ant_search_range(kk,2));
ant_transit_prob_p(kk) = p(ant_search_range(kk,1), ant_search_range(kk,2));
end
end
ant_transit_prob = (ant_transit_prob_v.^alpha) .* (ant_transit_prob_p.^beta) ./ ((sum(sum((ant_transit_prob_v.^alpha) .* (ant_transit_prob_p.^beta))))+eps);
% 产生一个随机数来确定下一个位置
rand('state', sum(100*clock));
temp = find(cumsum(ant_transit_prob)>=rand(1), 1);
ant_next_row_idx = ant_search_range(temp,1);
ant_next_col_idx = ant_search_range(temp,2);
if length(ant_next_row_idx) == 0
ant_next_row_idx = ant_current_row_idx;
ant_next_col_idx = ant_current_col_idx;
end
ant_pos_idx(ant_idx,1) = ant_next_row_idx;
ant_pos_idx(ant_idx,2) = ant_next_col_idx;
delta_p_current(ant_pos_idx(ant_idx,1), ant_pos_idx(ant_idx,2)) = 1;
if step_idx <= memory_length
ant_memory(ant_idx,step_idx) = (ant_pos_idx(ant_idx,1)-1)*ncol + ant_pos_idx(ant_idx,2);
elseif step_idx > memory_length
ant_memory(ant_idx,:) = circshift(ant_memory(ant_idx,:),[0 -1]);
ant_memory(ant_idx,end) = (ant_pos_idx(ant_idx,1)-1)*ncol + ant_pos_idx(ant_idx,2);
end
%更新信息素函数
p = ((1-rho).*p + rho.*delta_p_current.*v).*delta_p_current + p.*(abs(1-delta_p_current));
end
delta_p = (delta_p + (delta_p_current>0))>0;
p = (1-phi).*p;
end
end
% 产生边缘图矩阵,运用信息素函数判断是否是边缘
% 调用子函数进行二值分割
T = func_seperate_two_class(p);
%imwrite(uint8(abs((p>=T).*255-255)), gray(256), [filename '_edge_aco_' num2str(nMethod) '.jpg'], 'jpg');
subplot(2,3,nMethod)
imshow(uint8(abs((p>=T).*255-255)));
fprintf('Done!\n');
end
%%%%%%%%子函数%%%%%%%
function level = func_seperate_two_class(I)
% 功能:进行二值分割
I = I(:);
% STEP 1: 通过直方图计算灰度均值, 设定T=mean(I)
[counts, N]=hist(I,256);
i=1;
mu=cumsum(counts);
T(i)=(sum(N.*counts))/mu(end);
% STEP 2:


Matlab领域
- 粉丝: 3w+
- 资源: 3898
最新资源
- Ollama安装包Mac版
- 【人工智能比赛获奖源码】+【PyQt5混元大模型】+【桌面聊天应用】+【效率辅助工具】
- 三相VIENNA整流器Simulink仿真详解:输入电压与输出电压规格化设定,高效率与精准控制特性的系统分析展示,三相VIENNA整流技术详解:Simulink仿真分析与电路设计特点 输入220V
- 是德Keysight Infiniium MXR/EXR-Series Oscilloscopes使用说明书下载
- 按年龄和国家划分的全球平均人体身高.zip
- 《基于多时段动态电价策略优化电动汽车有序充电,实现电网负荷平衡与用户充电成本节约》,《基于多时段动态电价策略与粒子群算法的电动汽车有序充电优化》,《基于多时段动态电价的电动汽车有序充电策略优化》 平台
- LabVIEW与YOLOv5融合:多模型并行推理的ONNX Runtime封装DLL,支持视频、图片双模式CPU/GPU切换式识别,实现灵活选择高性价比推演模式,可迅速标注及高效训练,LabVIEW与
- Chatbox MAC安装包
- 质心侧偏角与横摆角速度相平面法在车辆动力学控制中的协调应用与程序实现,车辆动力学控制的质心侧偏角与横摆角速度相平面法研究及程序实现,相平面法,车辆动力学控制,协调控制使用,质心侧偏角-横摆角速度相平面
- IIS假死监视工具,发现假死就重启iis和释放程序池
- FPGA采集CameraLink相机Full模式解码输出方案:从输入到HDMI高清视频输出的实现流程,FPGA采集CameraLink相机Full模式解码输出实现方案:从相机输入到HDMI视频输出精细
- c++-继承与派生-例题源代码
- 【毕业设计参考】AVR寻迹小车.rar
- springcloud
- 波特兰建筑许可数据.zip
- Vuforia package-10-28-4
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈


