PI-REC
------------------------------------------------------------------------------------------------------
<p align="left">
<img src="https://img.shields.io/badge/version-0.1-brightgreen.svg?style=flat-square"
alt="Version">
<img src="https://img.shields.io/badge/status-Release-gold.svg?style=flat-square"
alt="Status">
<img src="https://img.shields.io/badge/platform-win | linux-lightgrey.svg?style=flat-square"
alt="Platform">
<img src="https://img.shields.io/badge/PyTorch version-1.0-blue.svg?style=flat-square"
alt="PyTorch">
<img src="https://img.shields.io/badge/License-CC BY·NC 4.0-green.svg?style=flat-square"
alt="License">
<a href="https://paperswithcode.com/sota/image-reconstruction-edge-to-shoes?p=pi-rec-progressive-image- reconstruction-1"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/pi-rec-progressive-image-reconstruction-1/image-reconstruction-edge-to-shoes" alt="Evaluation"></a>
</p>
**Progressive Image Reconstruction Network With Edge and Color Domain** <br>
### [Paper on arXiv](https://arxiv.org/abs/1903.10146) | [Paper Read Online](https://www.arxiv-vanity.com/papers/1903.10146/) | [BibTex](#citation)
-----
<p align="center">
<img src="files/banner3.png" width="720" >
</p>
<p align="center">
<em>When I was a schoolchild, </em>
</p>
<p align="center">
<em>I dreamed about becoming a painter. </em>
</p>
<p align="center">
<em>With PI-REC, we realize our dream. </em>
</p>
<p align="center">
<em>For you, for everyone.</em>
</p>
-----
<br>
<br>
<p align="center"><b>English | <a href="#jump_zh">中文版</a></b>
</p>
<br>
🏳️🌈 Demo show time 🏳️🌈
------
#### Draft2Painting
<p align="center">
<img src="files/edit.jpg" width="840">
</p>
<p align="center" class="third">
<img src="files/demo_inter_mid.gif" >
</p>
#### Tool operation
<p align="center" class="half">
<img src="files/demo_getchu_mid.gif">
</p>
<p align="center" class="half">
<img src="files/demo_celeba_mid.gif">
</p>
<br>
<br>
Introduction
-----
We propose a universal image reconstruction method to represent detailed images purely from binary sparse edge and flat color domain.
Here is the open source code and the drawing tool.
Learn more about related works here --> [image-to-image papers collection](https://github.com/lzhbrian/image-to-image-papers).<br>
*\*The codes of training for release are no completed yet, also waiting for release license of lab.* <br>
**Find more details in our paper: [Paper on arXiv](https://arxiv.org/abs/1903.10146)**<br>
<br>
Quick Overview of Paper
-----
### What can we do?
<p align="center">
<img src="files/s_banner4.jpg" width="720">
</p>
- Figure (a): Image reconstruction from extreme sparse inputs.<br>
- Figure (b): Hand drawn draft translation.<br>
- Figure (c): User-defined edge-to-image **(E2I)** translation.<br>
<br>
### Model Architecture
We strongly recommend you to understand our model architecture before running our drawing tool. Refer to the paper for more details.<br>
<p align="center">
<img src="files/architecture_v5.png" width="960">
</p>
## <span id='pre'>Prerequisites</span>
- Python 3+
- PyTorch `1.0` (`0.4` is not supported)
- NVIDIA GPU + CUDA cuDNN
## <span id='ins'>Installation</span>
- Clone this repo
- Install PyTorch and dependencies from http://pytorch.org
- Install python requirements:
```bash
pip install -r requirements.txt
```
## <span id='usage'>Usage</span>
#### We provide two ways in this project:
- **Basic command line mode** for batch test
- **Drawing tool GUI mode** for man-machine interactive creation
Firstly, follow steps below with patience to prepare pre-trained models:
1. Download the pre-trained models you want here: <a href="https://drive.google.com/open?id=1Oc-MZ0O2sZszes2_QF12dflDp6uIBpGR" target="_blank">Google Drive</a> | <a href="https://pan.baidu.com/s/1oX7ckJrOozA7oYwzeFHhSA" target="_blank">Baidu</a> (Extraction Code: 9qn1)
2. Unzip the `.7z` and put it under your dir `./models/`.<br>
So make sure your path now is: `./models/celeba/<xxxxx.pth>`
3. Complete the above [Prerequisites](#pre) and [Installation](#ins)
#### Files are ready now! Read the [User Manual](USAGE.md) for firing operations.
<br>
<br>
<br>
<span id="jump_zh">中文版介绍 :mahjong: </span>
-----
Demo演示
-----
自己看上面的咯~
简介
-----
我们提出了一种基于GAN的渐进式训练方法 PI-REC,它能从超稀疏二值边缘以及色块中还原重建真实图像。
我们的论文重心是在超稀疏信息输入的还原重建上,并非自动绘画。
总之,PI-REC论文/项目属于*图像重建,图像翻译,条件图像生成,AI自动绘画*的前沿交叉领域的最新产出,而非简单的以图搜图等等。阅读论文中的
Related Work部分或 [image-to-image论文整合项目](https://github.com/lzhbrian/image-to-image-papers)以了解更多。<br>
**注意**:这里包含了论文代码以及交互式绘画工具。此论文demo仅推荐给不会绘画的人试玩(比如我),或给予相关领域科研人员参考。远远未达到民用或辅助专业人士绘图的程度。<br>
<br>
*\*由于训练过程过于复杂,用于训练的发布版代码还未完成* <br>
**在我们的论文中你可以获得更多信息: [Paper on arXiv (推荐)](https://arxiv.org/abs/1903.10146) | [机器之心-中文新闻稿](https://www.jiqizhixin.com/articles/2019-04-03-4)** | **[b站中文视频教程(有福利?)](https://www.bilibili.com/video/av48420057/)**
<br>
<br>
论文概览
-----
### PI-REC能做啥?
<p align="center">
<img src="files/s_banner4.jpg" width="720">
</p>
- Figure (a): 超稀疏输入信息重建原图。<br>
- Figure (b): 手绘草图转换。<br>
- Figure (c): 用户自定义的 edge-to-image **(E2I)** 转换.<br>
<br>
### 模型结构
我们强烈建议你先仔细阅读论文熟悉我们的模型结构,这会对运行使用大有裨益。
<p align="center">
<img src="files/architecture_v5.png" width="960">
</p>
## 基础环境
- Python 3
- PyTorch `1.0` (`0.4` 会报错)
- NVIDIA GPU + CUDA cuDNN (当前版本已可选cpu,请修改`config.yml`中的`DEVICE`)
## 第三方库安装
- Clone this repo
- 安装PyTorch和torchvision --> http://pytorch.org
- 安装 python requirements:
```bash
pip install -r requirements.txt
```
## <span id='usage_zh'>运行使用</span>
#### 我们提供以下两种方式运行:
- **基础命令行模式** 用来批处理测试整个文件夹的图片
- **绘画GUI工具模式** 用来实现交互式创作
首先,请耐心地按照以下步骤做准备:
1. 在这里下载你想要的预训练模型文件:<a href="https://drive.google.com/open?id=1Oc-MZ0O2sZszes2_QF12dflDp6uIBpGR" target="_blank">Google Drive</a> | <a href="https://pan.baidu.com/s/1oX7ckJrOozA7oYwzeFHhSA" target="_blank">Baidu</a> (提取码: 9qn1)
> 更新:2021.4 baidu网盘和谐了我的权重文件,已无法分享,请自行前往Google drive~
3. 解压,放到目录`./models`下<br>
现在你的目录应该像这样: `./models/celeba/<xxxxx.pth>`
3. 完成上面的基础环境和第三方库安装
#### 啦啦啦啦,到这里准备工作就完成啦,接下来需要阅读[用户手册](USAGE.md#jump_zh)来运行程序~
<br>
<br>
------
Acknowledgment
-----
Code structure is modified from [Anime-InPainting](https://github.com/youyuge34/Anime-InPainting), which is based on [Edge-Connect](https://github.com/knazeri/edge-connect).
<span id="citation"> BibTex </span>
-----
```
@article{you2019pirec,
title={PI-REC: Progressive Image Reconstruction Network With Edge and Color Domain},
author={You, Sheng and You, Ning and Pan, Minxue},
journal={arXiv preprint arXiv:1903.10146},
year={2019}
}
```
没有合适的资源?快使用搜索试试~ 我知道了~
图像翻译,条件GAN,AI绘画.zip
共85个文件
png:44个
py:22个
gif:10个
需积分: 5 0 下载量 166 浏览量
2024-07-17
13:04:17
上传
评论
收藏 14.61MB ZIP 举报
温馨提示
图像翻译,条件GAN,AI绘画.zip
资源推荐
资源详情
资源评论
收起资源包目录
图像翻译,条件GAN,AI绘画.zip (85个子文件)
WGT-code
test_with_refine.py 63B
LICENSE.md 17KB
files
architecture_v5.png 332KB
s_banner4.jpg 150KB
edit.jpg 119KB
banner.png 111KB
demo2.gif 398KB
inter1.gif 185KB
banner3.png 208KB
inter2.gif 131KB
demo_getchu_mid.gif 1.2MB
mode3.gif 2.08MB
mode2.gif 1.84MB
tool_1.png 14KB
inter3.gif 1.32MB
demo1.gif 471KB
banner2.png 162KB
demo_celeba_mid.gif 2.99MB
demo_inter_mid.gif 3.21MB
main.py 4KB
src
utils.py 9KB
__init__.py 7B
pi_rec.py 9KB
dataset.py 4KB
networks.py 3KB
models.py 2KB
config.py 1KB
USAGE.md 12KB
examples
getchu
long_hair_edge.png 1KB
banner2_e.png 1KB
fringe_edge.png 1KB
r1.png 37KB
banner1_out.png 33KB
b4_e.png 1KB
b6_c.png 4KB
5_c.png 2KB
b6_e.png 2KB
r1_e.png 2KB
banner2_out.png 33KB
banner2_c.png 2KB
4_edge.png 1KB
r1_c.png 5KB
long_hair_color.png 2KB
5_e.png 1KB
4_cd.png 4KB
b4.png 32KB
5.png 33KB
4.png 34KB
fringe.png 30KB
banner1_c.png 3KB
fringe_color.png 2KB
b6.png 32KB
long_hair.png 30KB
banner1_e.png 1KB
b4_c.png 2KB
celeba
6_c.png 4KB
3.png 32KB
6_e.png 1KB
3_c.png 3KB
5_c.png 3KB
3_e.png 1KB
4_c.png 2KB
6.png 33KB
5_e.png 1KB
5.png 32KB
4.png 31KB
4_e.png 1KB
README.md 280B
config.yml.example 824B
requirements.txt 143B
test_style_batches.py 3KB
tool_draw.py 17KB
refine.py 63B
.gitignore 1KB
test.py 63B
README.md 8KB
scripts
color_inter.py 490B
hsv_inter.py 472B
MUNIT
test_batch_styles.py 9KB
flist_train_split.py 2KB
BicycleGAN
combine_gray_edge.py 3KB
combine_folders.py 3KB
combine_hsv.py 2KB
flist_split.py 353B
flist.py 545B
共 85 条
- 1
资源评论
JJJ69
- 粉丝: 6352
- 资源: 5918
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- CMake 入门实战的源代码
- c7383c5d0009dfc59e9edf595bb0bcd0.zip
- 柯尼卡美能达Bizhub C266打印机驱动下载
- java游戏之我当皇帝那些年.zip开发资料
- 基于Matlab的汉明码(Hamming Code)纠错传输以及交织编码(Interleaved coding)仿真.zip
- 中国省级新质生产力发展指数数据(任宇新版本)2010-2023年.txt
- 基于Matlab的2Q-FSK移频键控通信系统仿真.zip
- 使用C++实现的常见算法
- travel-web-springboot【程序员VIP专用】.zip
- 基于Matlab, ConvergeCase中部分2D结果文件输出至EXCEL中 能力有限,代码和功能极其简陋.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功