# Partial-Computation-Offloading-For-MEC
Optimization of delay for partial computing task offloading based on deep reinforcement learning
(基于深度强化学习的部分计算任务卸载延迟优化)
<img src="resources/fig1.png"/>
This repository provides the official Tensorflow implementation for the following paper:
**Intelligent Delay-Aware Partial Computing Task Offloading for Multi-User Industrial Internet of Things through Edge Computing**
> ***Abstract***: The development of Industrial Internet of Things (IIoT) and Industry 4.0 has completely changed the traditional manufacturing industry. Intelligent IIoT technology usually involves a large number of intensive computing tasks. Resource-constrained IIoT devices often cannot meet the real-time requirements of these tasks. As a promising paradigm, Mobile Edge Computing (MEC) system migrates the computation intensive tasks from resource-constrained IIoT devices to nearby MEC servers, thereby obtaining lower delay and energy consumption. However, considering the varying channel conditions as well as the distinct delay requirements for various computing tasks, it is challenging to coordinate the computing task offloading among multiple users. In this paper, we propose an autonomous partial offloading system for delay sensitive computation tasks in multi-user IIoT MEC systems. Our goal is to provide offloading services with minimum delay for better Quality of Service (QoS). Enlighten by the recent advancement of Reinforcement Learning (RL), we propose two RL based offloading strategies to automatically optimize the delay performance. Specifically, we first implement Q-learning algorithm to provide a discrete partial offloading decision. Then, to further optimize the system performance with more flexible task offloading, the offloading decisions are given as continuous based on Deep Deterministic Policy Gradient (DDPG). The simulation results show that, the Q-learning scheme reduces the delay by 23%, and the DDPG scheme reduces the delay by 30%.
## Method
The overall architecture of our method:
<img src="resources/fig2.png"/>
## Citation
If you find our work helpful to your research, please cite our paper:
```
@article{deng2021intelligent,
title={Intelligent Delay-Aware Partial Computing Task Offloading for Multi-User Industrial Internet of Things through Edge Computing},
author={Deng, Xiaoheng and Yin, Jian and Guan, Peiyuan and Xiong, Neal N and Zhang, Lan and Mumtaz, Shahid},
journal={IEEE Internet of Things Journal},
year={2021},
publisher={IEEE}
}
```
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于深度强化学习的部分计算任务卸载延迟优化python源码+代码注释.zip个人经导师指导并认可通过的98分大作业设计项目,适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。 基于深度强化学习的部分计算任务卸载延迟优化python源码+代码注释.zip个人经导师指导并认可通过的98分大作业设计项目,适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。 基于深度强化学习的部分计算任务卸载延迟优化python源码+代码注释.zip个人经导师指导并认可通过的98分大作业设计项目,适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。 基于深度强化学习的部分计算任务卸载延迟优化python源码+代码注释.zip个人经导师指导并认可通过的98分大作业设计项目,适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。基于深度强化学习的部分计算任务卸载延迟优化python源码+代码注释。
资源推荐
资源详情
资源评论
收起资源包目录
基于深度强化学习的部分计算任务卸载延迟优化python源码+代码注释.zip (5个子文件)
Partial-Computation-Offloading-For-MEC-main
resources
.gitattributes 90B
fig2.png 131B
fig1.png 130B
mec.py 4KB
README.md 3KB
共 5 条
- 1
资源评论
程序员张小妍
- 粉丝: 1w+
- 资源: 3243
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功