Namespace(F=1, num_ue=5)
Full_local 5.009379190666772
Full Offload 13.889811945013754
train epoch 0 avgSumCost = 5.094692665836453
train epoch 1 avgSumCost = 5.009379190666772
train epoch 2 avgSumCost = 5.009379190666772
train epoch 3 avgSumCost = 5.009379190666772
train epoch 4 avgSumCost = 5.009379190666772
train epoch 5 avgSumCost = 5.009379190666772
train epoch 6 avgSumCost = 5.009379190666772
train epoch 7 avgSumCost = 5.009379190666772
train epoch 8 avgSumCost = 5.009379190666772
train epoch 9 avgSumCost = 5.009379190666772
train epoch 10 avgSumCost = 5.009379190666772
train epoch 11 avgSumCost = 5.009379190666772
train epoch 12 avgSumCost = 5.009379190666772
train epoch 13 avgSumCost = 5.009379190666772
train epoch 14 avgSumCost = 5.009379190666772
train epoch 15 avgSumCost = 5.009379190666772
train epoch 16 avgSumCost = 5.009379190666772
train epoch 17 avgSumCost = 5.009379190666772
train epoch 18 avgSumCost = 5.009379190666772
train epoch 19 avgSumCost = 5.065912595923075
train epoch 20 avgSumCost = 5.009379190666772
train epoch 21 avgSumCost = 5.009379190666772
train epoch 22 avgSumCost = 5.009379190666772
train epoch 23 avgSumCost = 5.064339597147232
train epoch 24 avgSumCost = 5.009379190666772
train epoch 25 avgSumCost = 5.009379190666772
train epoch 26 avgSumCost = 5.009379190666772
train epoch 27 avgSumCost = 5.009379190666772
train epoch 28 avgSumCost = 5.009379190666772
train epoch 29 avgSumCost = 5.009379190666772
Q-learning 5.009379190666772 [5.094692665836453, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.065912595923075, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.064339597147232, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772]
Namespace(F=2, num_ue=5)
Full_local 4.887548204914221
Full Offload 6.815699305350944
train epoch 0 avgSumCost = 4.5648808720213925
train epoch 1 avgSumCost = 4.667043444881105
train epoch 2 avgSumCost = 4.887548204914221
train epoch 3 avgSumCost = 4.887548204914221
train epoch 4 avgSumCost = 4.887548204914221
train epoch 5 avgSumCost = 4.887548204914221
train epoch 6 avgSumCost = 4.887548204914221
train epoch 7 avgSumCost = 4.887548204914221
train epoch 8 avgSumCost = 4.887548204914221
train epoch 9 avgSumCost = 4.667043444881105
train epoch 10 avgSumCost = 4.887548204914221
train epoch 11 avgSumCost = 4.887548204914221
train epoch 12 avgSumCost = 4.887548204914221
train epoch 13 avgSumCost = 4.142437067426093
train epoch 14 avgSumCost = 4.09384076737912
train epoch 15 avgSumCost = 4.08624583327997
train epoch 16 avgSumCost = 4.077816420513377
train epoch 17 avgSumCost = 4.077443502867611
train epoch 18 avgSumCost = 4.070790627130448
train epoch 19 avgSumCost = 4.071315886761339
train epoch 20 avgSumCost = 4.070576877540551
train epoch 21 avgSumCost = 4.071040335662298
train epoch 22 avgSumCost = 4.071900704581196
train epoch 23 avgSumCost = 4.072247679520573
train epoch 24 avgSumCost = 4.0726542747861805
train epoch 25 avgSumCost = 4.072451749055373
train epoch 26 avgSumCost = 4.386717119831153
train epoch 27 avgSumCost = 4.887548204914221
train epoch 28 avgSumCost = 4.071454468760273
train epoch 29 avgSumCost = 4.075417887437203
Q-learning 3.9822166954489373 [4.5648808720213925, 4.667043444881105, 4.887548204914221, 4.887548204914221, 4.887548204914221, 4.887548204914221, 4.887548204914221, 4.887548204914221, 4.887548204914221, 4.667043444881105, 4.887548204914221, 4.887548204914221, 4.887548204914221, 4.142437067426093, 4.09384076737912, 4.08624583327997, 4.077816420513377, 4.077443502867611, 4.070790627130448, 4.071315886761339, 4.070576877540551, 4.071040335662298, 4.071900704581196, 4.072247679520573, 4.0726542747861805, 4.072451749055373, 4.386717119831153, 4.887548204914221, 4.071454468760273, 4.075417887437203]
Namespace(F=3, num_ue=5)
Full_local 4.912044414348703
Full Offload 4.606105886930349
train epoch 0 avgSumCost = 3.632028224673733
train epoch 1 avgSumCost = 3.6214871756287694
train epoch 2 avgSumCost = 3.621898451830713
train epoch 3 avgSumCost = 3.6222909838266224
train epoch 4 avgSumCost = 3.6211538584489404
train epoch 5 avgSumCost = 3.62097907357618
train epoch 6 avgSumCost = 3.6214432926499804
train epoch 7 avgSumCost = 3.622168133917381
train epoch 8 avgSumCost = 3.621670053813848
train epoch 9 avgSumCost = 3.62134361684143
train epoch 10 avgSumCost = 3.621523989332771
train epoch 11 avgSumCost = 3.6219150036376204
train epoch 12 avgSumCost = 3.6219823910846074
train epoch 13 avgSumCost = 3.621937024613577
train epoch 14 avgSumCost = 3.652660912938653
train epoch 15 avgSumCost = 3.6458899078200355
train epoch 16 avgSumCost = 3.6215392241265993
train epoch 17 avgSumCost = 3.642733750790841
train epoch 18 avgSumCost = 3.6212515851673066
train epoch 19 avgSumCost = 3.6209295961142804
train epoch 20 avgSumCost = 3.649792728064822
train epoch 21 avgSumCost = 3.6194419794094044
train epoch 22 avgSumCost = 3.6206526997690234
train epoch 23 avgSumCost = 3.6172611674153146
train epoch 24 avgSumCost = 3.6247001008835373
train epoch 25 avgSumCost = 3.6237724287470634
train epoch 26 avgSumCost = 3.630732002473451
train epoch 27 avgSumCost = 3.6221393324859945
train epoch 28 avgSumCost = 3.615116878067054
train epoch 29 avgSumCost = 3.6233101071181544
Q-learning 3.595911306981166 [3.632028224673733, 3.6214871756287694, 3.621898451830713, 3.6222909838266224, 3.6211538584489404, 3.62097907357618, 3.6214432926499804, 3.622168133917381, 3.621670053813848, 3.62134361684143, 3.621523989332771, 3.6219150036376204, 3.6219823910846074, 3.621937024613577, 3.652660912938653, 3.6458899078200355, 3.6215392241265993, 3.642733750790841, 3.6212515851673066, 3.6209295961142804, 3.649792728064822, 3.6194419794094044, 3.6206526997690234, 3.6172611674153146, 3.6247001008835373, 3.6237724287470634, 3.630732002473451, 3.6221393324859945, 3.615116878067054, 3.6233101071181544]
Namespace(F=4, num_ue=5)
Full_local 4.789397153234043
Full Offload 3.3873070097886715
train epoch 0 avgSumCost = 3.358768307300043
train epoch 1 avgSumCost = 4.789397153234043
train epoch 2 avgSumCost = 4.789397153234043
train epoch 3 avgSumCost = 4.789397153234043
train epoch 4 avgSumCost = 4.789397153234043
train epoch 5 avgSumCost = 4.789397153234043
train epoch 6 avgSumCost = 4.789397153234043
train epoch 7 avgSumCost = 4.789397153234043
train epoch 8 avgSumCost = 4.521549710916772
train epoch 9 avgSumCost = 4.789397153234043
train epoch 10 avgSumCost = 4.789397153234043
train epoch 11 avgSumCost = 4.789397153234043
train epoch 12 avgSumCost = 4.789397153234043
train epoch 13 avgSumCost = 4.789397153234043
train epoch 14 avgSumCost = 4.789397153234043
train epoch 15 avgSumCost = 4.521549710916772
train epoch 16 avgSumCost = 4.789397153234043
train epoch 17 avgSumCost = 4.789397153234043
train epoch 18 avgSumCost = 4.521549710916772
train epoch 19 avgSumCost = 3.9816366517125052
train epoch 20 avgSumCost = 4.789397153234043
train epoch 21 avgSumCost = 4.789397153234043
train epoch 22 avgSumCost = 4.789397153234043
train epoch 23 avgSumCost = 4.789397153234043
train epoch 24 avgSumCost = 4.789397153234043
train epoch 25 avgSumCost = 4.789397153234043
train epoch 26 avgSumCost = 4.789397153234043
train epoch 27 avgSumCost = 4.789397153234043
train epoch 28 avgSumCost = 4.789397153234043
train epoch 29 avgSumCost = 4.789397153234043
Q-learning 3.0846977339557067 [3.358768307300043, 4.789397153234043, 4.789397153234043, 4.789397153234043, 4.789397153234043, 4.789397153234043, 4.789397153234043, 4.789397153
程序员张小妍
- 粉丝: 1w+
- 资源: 3474
最新资源
- 基于SpringBoot+vue的社区医院管理系统.zip
- 锂电池SOC估计基于二阶RC模型的扩展卡尔曼滤波估算SOC 验证工况:HPPC 和 1C放电
- c#轻量级高并发物联网服务器接收程序源码(仅仅是接收硬件数据程序,没有web端,不是java,协议自己写,如果问及这些问题统统不回复 ),对接几万个设备没问题,数据库采用ef6+sqlite,可改e
- CityGPT: Empowering Urban Spatial Cognition of Large Language Models
- 平安夜祝福代码html 代码实现示例.docx
- java(二叉树的基本操作和部分二叉树相关的题)
- Spring Boot 整合 RabbitMQ(在Spring项目中使用RabbitMQ)
- 三菱Fx3U三轴定位控制程序,其中两轴为脉冲输出同步运行360度转盘,3轴为工作台丝杆 1.本程序结构清晰,有公共程序,原点回归,手动点动运行,手动微动运行 报警程序,参数初始化程序等 2.自动
- armv7l的树莓派可以用的onnxruntime版本
- 纸袋检测15-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- Yealink VC Desktop1.28.0.72, 免费,局域网,IP电话, SIP, VOIP, 视频通话,可与手机互通,手机上也安装 yealink
- 全自动棒料加工自动设备sw17全套技术开发资料100%好用.zip
- 用Jenkins 跑gitte仓库中的postman脚本 请求
- Instruction Pre-Training: Language Models are Supervised Multitask Learners
- 图片转PDF_QQ浏览器_20241226.pdf
- STM8驱动的MPU6050陀螺仪源程序
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈