Namespace(F=1, num_ue=5)
Full_local 5.009379190666772
Full Offload 13.889811945013754
train epoch 0 avgSumCost = 5.094692665836453
train epoch 1 avgSumCost = 5.009379190666772
train epoch 2 avgSumCost = 5.009379190666772
train epoch 3 avgSumCost = 5.009379190666772
train epoch 4 avgSumCost = 5.009379190666772
train epoch 5 avgSumCost = 5.009379190666772
train epoch 6 avgSumCost = 5.009379190666772
train epoch 7 avgSumCost = 5.009379190666772
train epoch 8 avgSumCost = 5.009379190666772
train epoch 9 avgSumCost = 5.009379190666772
train epoch 10 avgSumCost = 5.009379190666772
train epoch 11 avgSumCost = 5.009379190666772
train epoch 12 avgSumCost = 5.009379190666772
train epoch 13 avgSumCost = 5.009379190666772
train epoch 14 avgSumCost = 5.009379190666772
train epoch 15 avgSumCost = 5.009379190666772
train epoch 16 avgSumCost = 5.009379190666772
train epoch 17 avgSumCost = 5.009379190666772
train epoch 18 avgSumCost = 5.009379190666772
train epoch 19 avgSumCost = 5.065912595923075
train epoch 20 avgSumCost = 5.009379190666772
train epoch 21 avgSumCost = 5.009379190666772
train epoch 22 avgSumCost = 5.009379190666772
train epoch 23 avgSumCost = 5.064339597147232
train epoch 24 avgSumCost = 5.009379190666772
train epoch 25 avgSumCost = 5.009379190666772
train epoch 26 avgSumCost = 5.009379190666772
train epoch 27 avgSumCost = 5.009379190666772
train epoch 28 avgSumCost = 5.009379190666772
train epoch 29 avgSumCost = 5.009379190666772
Q-learning 5.009379190666772 [5.094692665836453, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.065912595923075, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.064339597147232, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772, 5.009379190666772]
Namespace(F=2, num_ue=5)
Full_local 4.887548204914221
Full Offload 6.815699305350944
train epoch 0 avgSumCost = 4.5648808720213925
train epoch 1 avgSumCost = 4.667043444881105
train epoch 2 avgSumCost = 4.887548204914221
train epoch 3 avgSumCost = 4.887548204914221
train epoch 4 avgSumCost = 4.887548204914221
train epoch 5 avgSumCost = 4.887548204914221
train epoch 6 avgSumCost = 4.887548204914221
train epoch 7 avgSumCost = 4.887548204914221
train epoch 8 avgSumCost = 4.887548204914221
train epoch 9 avgSumCost = 4.667043444881105
train epoch 10 avgSumCost = 4.887548204914221
train epoch 11 avgSumCost = 4.887548204914221
train epoch 12 avgSumCost = 4.887548204914221
train epoch 13 avgSumCost = 4.142437067426093
train epoch 14 avgSumCost = 4.09384076737912
train epoch 15 avgSumCost = 4.08624583327997
train epoch 16 avgSumCost = 4.077816420513377
train epoch 17 avgSumCost = 4.077443502867611
train epoch 18 avgSumCost = 4.070790627130448
train epoch 19 avgSumCost = 4.071315886761339
train epoch 20 avgSumCost = 4.070576877540551
train epoch 21 avgSumCost = 4.071040335662298
train epoch 22 avgSumCost = 4.071900704581196
train epoch 23 avgSumCost = 4.072247679520573
train epoch 24 avgSumCost = 4.0726542747861805
train epoch 25 avgSumCost = 4.072451749055373
train epoch 26 avgSumCost = 4.386717119831153
train epoch 27 avgSumCost = 4.887548204914221
train epoch 28 avgSumCost = 4.071454468760273
train epoch 29 avgSumCost = 4.075417887437203
Q-learning 3.9822166954489373 [4.5648808720213925, 4.667043444881105, 4.887548204914221, 4.887548204914221, 4.887548204914221, 4.887548204914221, 4.887548204914221, 4.887548204914221, 4.887548204914221, 4.667043444881105, 4.887548204914221, 4.887548204914221, 4.887548204914221, 4.142437067426093, 4.09384076737912, 4.08624583327997, 4.077816420513377, 4.077443502867611, 4.070790627130448, 4.071315886761339, 4.070576877540551, 4.071040335662298, 4.071900704581196, 4.072247679520573, 4.0726542747861805, 4.072451749055373, 4.386717119831153, 4.887548204914221, 4.071454468760273, 4.075417887437203]
Namespace(F=3, num_ue=5)
Full_local 4.912044414348703
Full Offload 4.606105886930349
train epoch 0 avgSumCost = 3.632028224673733
train epoch 1 avgSumCost = 3.6214871756287694
train epoch 2 avgSumCost = 3.621898451830713
train epoch 3 avgSumCost = 3.6222909838266224
train epoch 4 avgSumCost = 3.6211538584489404
train epoch 5 avgSumCost = 3.62097907357618
train epoch 6 avgSumCost = 3.6214432926499804
train epoch 7 avgSumCost = 3.622168133917381
train epoch 8 avgSumCost = 3.621670053813848
train epoch 9 avgSumCost = 3.62134361684143
train epoch 10 avgSumCost = 3.621523989332771
train epoch 11 avgSumCost = 3.6219150036376204
train epoch 12 avgSumCost = 3.6219823910846074
train epoch 13 avgSumCost = 3.621937024613577
train epoch 14 avgSumCost = 3.652660912938653
train epoch 15 avgSumCost = 3.6458899078200355
train epoch 16 avgSumCost = 3.6215392241265993
train epoch 17 avgSumCost = 3.642733750790841
train epoch 18 avgSumCost = 3.6212515851673066
train epoch 19 avgSumCost = 3.6209295961142804
train epoch 20 avgSumCost = 3.649792728064822
train epoch 21 avgSumCost = 3.6194419794094044
train epoch 22 avgSumCost = 3.6206526997690234
train epoch 23 avgSumCost = 3.6172611674153146
train epoch 24 avgSumCost = 3.6247001008835373
train epoch 25 avgSumCost = 3.6237724287470634
train epoch 26 avgSumCost = 3.630732002473451
train epoch 27 avgSumCost = 3.6221393324859945
train epoch 28 avgSumCost = 3.615116878067054
train epoch 29 avgSumCost = 3.6233101071181544
Q-learning 3.595911306981166 [3.632028224673733, 3.6214871756287694, 3.621898451830713, 3.6222909838266224, 3.6211538584489404, 3.62097907357618, 3.6214432926499804, 3.622168133917381, 3.621670053813848, 3.62134361684143, 3.621523989332771, 3.6219150036376204, 3.6219823910846074, 3.621937024613577, 3.652660912938653, 3.6458899078200355, 3.6215392241265993, 3.642733750790841, 3.6212515851673066, 3.6209295961142804, 3.649792728064822, 3.6194419794094044, 3.6206526997690234, 3.6172611674153146, 3.6247001008835373, 3.6237724287470634, 3.630732002473451, 3.6221393324859945, 3.615116878067054, 3.6233101071181544]
Namespace(F=4, num_ue=5)
Full_local 4.789397153234043
Full Offload 3.3873070097886715
train epoch 0 avgSumCost = 3.358768307300043
train epoch 1 avgSumCost = 4.789397153234043
train epoch 2 avgSumCost = 4.789397153234043
train epoch 3 avgSumCost = 4.789397153234043
train epoch 4 avgSumCost = 4.789397153234043
train epoch 5 avgSumCost = 4.789397153234043
train epoch 6 avgSumCost = 4.789397153234043
train epoch 7 avgSumCost = 4.789397153234043
train epoch 8 avgSumCost = 4.521549710916772
train epoch 9 avgSumCost = 4.789397153234043
train epoch 10 avgSumCost = 4.789397153234043
train epoch 11 avgSumCost = 4.789397153234043
train epoch 12 avgSumCost = 4.789397153234043
train epoch 13 avgSumCost = 4.789397153234043
train epoch 14 avgSumCost = 4.789397153234043
train epoch 15 avgSumCost = 4.521549710916772
train epoch 16 avgSumCost = 4.789397153234043
train epoch 17 avgSumCost = 4.789397153234043
train epoch 18 avgSumCost = 4.521549710916772
train epoch 19 avgSumCost = 3.9816366517125052
train epoch 20 avgSumCost = 4.789397153234043
train epoch 21 avgSumCost = 4.789397153234043
train epoch 22 avgSumCost = 4.789397153234043
train epoch 23 avgSumCost = 4.789397153234043
train epoch 24 avgSumCost = 4.789397153234043
train epoch 25 avgSumCost = 4.789397153234043
train epoch 26 avgSumCost = 4.789397153234043
train epoch 27 avgSumCost = 4.789397153234043
train epoch 28 avgSumCost = 4.789397153234043
train epoch 29 avgSumCost = 4.789397153234043
Q-learning 3.0846977339557067 [3.358768307300043, 4.789397153234043, 4.789397153234043, 4.789397153234043, 4.789397153234043, 4.789397153234043, 4.789397153234043, 4.789397153
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
Python毕业设计基于深度强化学习的MEC计算卸载与资源分配源码(高分项目).zip 个人经导师指导并认可通过的高分毕业设计项目,评审分98分。主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。 Python毕业设计基于深度强化学习的MEC计算卸载与资源分配源码(高分项目).zip 个人经导师指导并认可通过的高分毕业设计项目,评审分98分。主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。 Python毕业设计基于深度强化学习的MEC计算卸载与资源分配源码(高分项目).zip Python毕业设计基于深度强化学习的MEC计算卸载与资源分配源码(高分项目).zip Python毕业设计基于深度强化学习的MEC计算卸载与资源分配源码(高分项目).zip Python毕业设计基于深度强化学习的MEC计算卸载与资源分配源码(高分项目).zip Python毕业设计基于深度强化学习的MEC计算卸载与资源分配源码(高分项目).zip Python毕业设计基于深度强化学习的MEC计算卸载与资源分配源
资源推荐
资源详情
资源评论
收起资源包目录
Python基于深度强化学习的MEC计算卸载与资源分配.zip (18个子文件)
主master文件夹
figure
Figure_2.png 32KB
Figure_3.png 35KB
Figure_1.png 33KB
mec_dqn.py 10KB
draw
draw_f2.py 1KB
draw_f1.py 1KB
draw_f3.py 1KB
script
run_f1_q.sh 191B
run_f1_dqn.sh 235B
run_f2_dqn.sh 564B
run_f2_q.sh 472B
mec.py 5KB
log
log_f2_dqn.txt 1KB
log_f2_q.txt 21KB
log_f3_q.txt 9KB
log_f3_dqn.txt 580B
log_f1_q.txt 10KB
log_f1_dqn.txt 846B
共 18 条
- 1
资源评论
程序员张小妍
- 粉丝: 1w+
- 资源: 3318
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功