馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021.
* [About Weights & Biases](#about-weights-&-biases)
* [First-Time Setup](#first-time-setup)
* [Viewing runs](#viewing-runs)
* [Disabling wandb](#disabling-wandb)
* [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
* [Reports: Share your work with the world!](#reports)
## About Weights & Biases
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
* [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
* [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
* [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
* [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
* [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
* [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
## First-Time Setup
<details open>
<summary> Toggle Details </summary>
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
```shell
$ python train.py --project ... --name ...
```
YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
</details>
## Viewing Runs
<details open>
<summary> Toggle Details </summary>
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
* Training & Validation losses
* Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
* Learning Rate over time
* A bounding box debugging panel, showing the training progress over time
* GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
* System: Disk I/0, CPU utilization, RAM memory usage
* Your trained model as W&B Artifact
* Environment: OS and Python types, Git repository and state, **training command**
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
</details>
## Disabling wandb
* training after running `wandb disabled` inside that directory creates no wandb run
![Screenshot (84)](https://user-images.githubusercontent.com/15766192/143441777-c780bdd7-7cb4-4404-9559-b4316030a985.png)
* To enable wandb again, run `wandb online`
![Screenshot (85)](https://user-images.githubusercontent.com/15766192/143441866-7191b2cb-22f0-4e0f-ae64-2dc47dc13078.png)
## Advanced Usage
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
<details open>
<h3> 1: Train and Log Evaluation simultaneousy </h3>
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
so no images will be uploaded from your system more than once.
<details open>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --upload_data val</code>
![Screenshot from 2021-11-21 17-40-06](https://user-images.githubusercontent.com/15766192/142761183-c1696d8c-3f38-45ab-991a-bb0dfd98ae7d.png)
</details>
<h3>2. Visualize and Version Datasets</h3>
Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
</details>
<h3> 3: Train using dataset artifact </h3>
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 4: Save model checkpoints as artifacts </h3>
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --save_period 1 </code>
![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
</details>
</details>
<h3> 5: Resume runs from checkpoint artifacts. </h3>
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with聽<code>wandb-artifact://</code>聽prefix followed by the run path, i.e,聽<code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset<
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于yolov5的农作物害虫检测识别项目源码+全部资料.zip个人经导师指导并认可通过的高分毕业设计项目,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者。也可作为课程设计、期末大作业,项目都经过严格调试,确保可以运行! 基于yolov5的农作物害虫检测识别项目源码+全部资料.zip个人经导师指导并认可通过的高分毕业设计项目,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者。也可作为课程设计、期末大作业,项目都经过严格调试,确保可以运行! 基于yolov5的农作物害虫检测识别项目源码+全部资料.zip个人经导师指导并认可通过的高分毕业设计项目,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者。也可作为课程设计、期末大作业,项目都经过严格调试,确保可以运行! 基于yolov5的农作物害虫检测识别项目源码+全部资料.zip个人经导师指导并认可通过的高分毕业设计项目,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者。也可作为课程设计、期末大作业,项目都经过严格调试,确保可以运行! 基于yolov5的农作物害虫检测
资源推荐
资源详情
资源评论
收起资源包目录
基于yolov5的农作物害虫检测识别项目源码+全部资料.zip (110个子文件)
setup.cfg 2KB
Dockerfile 2KB
Dockerfile 821B
.dockerignore 4KB
.gitattributes 75B
.gitignore 4KB
tutorial.ipynb 55KB
bus.jpg 476KB
zidane.jpg 165KB
README.md 11KB
CODE_OF_CONDUCT.md 5KB
CONTRIBUTING.md 5KB
README.md 2KB
PULL_REQUEST_TEMPLATE.md 693B
SECURITY.md 359B
README.md 45B
datasets.py 46KB
general.py 39KB
train.py 34KB
common.py 33KB
export.py 29KB
wandb_utils.py 27KB
tf.py 21KB
plots.py 21KB
val.py 19KB
yolo.py 15KB
metrics.py 14KB
detect.py 13KB
torch_utils.py 13KB
augmentations.py 12KB
loss.py 10KB
__init__.py 8KB
autoanchor.py 7KB
dataPreprocess.py 7KB
hubconf.py 6KB
downloads.py 6KB
benchmarks.py 6KB
experimental.py 5KB
activations.py 3KB
callbacks.py 2KB
autobatch.py 2KB
restapi.py 1KB
sweep.py 1KB
resume.py 1KB
__init__.py 1KB
log_dataset.py 1KB
example_request.py 368B
__init__.py 0B
__init__.py 0B
__init__.py 0B
userdata.sh 1KB
get_coco.sh 900B
mime.sh 780B
get_coco128.sh 615B
download_weights.sh 523B
tmpbfy_j7hc 704KB
tmponwjaz95 14.14MB
requirements.txt 926B
additional_requirements.txt 105B
Objects365.yaml 8KB
xView.yaml 5KB
VOC.yaml 3KB
anchors.yaml 3KB
VisDrone.yaml 3KB
Argoverse.yaml 3KB
sweep.yaml 2KB
SKU-110K.yaml 2KB
coco.yaml 2KB
yolov5-p7.yaml 2KB
GlobalWheat2020.yaml 2KB
hyp.scratch-high.yaml 2KB
yolov5x6.yaml 2KB
yolov5s6.yaml 2KB
yolov5n6.yaml 2KB
yolov5m6.yaml 2KB
yolov5l6.yaml 2KB
yolov5-p6.yaml 2KB
coco128.yaml 2KB
hyp.scratch-low.yaml 2KB
yolov5-p2.yaml 2KB
hyp.scratch-med.yaml 2KB
yolov3-spp.yaml 2KB
yolov3.yaml 2KB
.pre-commit-config.yaml 2KB
yolov5s-ghost.yaml 1KB
yolov5s-transformer.yaml 1KB
yolov5-bifpn.yaml 1KB
yolov5-panet.yaml 1KB
yolov5m.yaml 1KB
yolov5s.yaml 1KB
yolov5x.yaml 1KB
yolov5n.yaml 1KB
yolov5l.yaml 1KB
yolov5-p34.yaml 1KB
yolov3-tiny.yaml 1KB
yolov5-fpn.yaml 1KB
hyp.VOC.yaml 1KB
hyp.Objects365.yaml 673B
Teddy.yaml 423B
app.yaml 174B
共 110 条
- 1
- 2
程序员张小妍
- 粉丝: 1w+
- 资源: 3474
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- “农贸互联”:农产品线上销售系统的开发与应用
- 基于web的音乐网站源码(java毕业设计完整源码+LW).zip
- 基于扰动观测器的伺服系统摩擦补偿Matlab仿真 1.模型简介 模型为基于扰动观测器的摩擦补偿仿真,仿真基于永磁同步电机速度、电流双闭环控制结构开发,双环均采用PI控制,PI参数已经调好 仿真
- 基于保信息学科平台系统设计与实现源码(java毕业设计完整源码+LW).zip
- openjdk8u432-ga
- 采用遗传算法来完成自动组卷功能的前后端分离的在线测试练习系统 基于若依框架进行二次开发 功能:用户管理,练习关系,测试管理,题库管理,数据统计,权限控制 自动组卷:使用遗传算法来完成该
- 年终总结,包含今年的参与的项目,工作内容,遇到的问题,建议,来年计划等
- 通用verilog串口控制器: 1.无奇偶校验,通过高低温等实验稳定运行,可靠性强,方便移植 2.提供整体工程,仿真,提供
- 基于深度学习的股票价格预测和量化策略研究python源码+文档说明+报告PPT(高分项目)
- “宠物服务智能化”:宠物服务平台的开发指南
- 基于深度学习的股票价格预测和量化策略研究python源码+文档说明+报告PPT
- 小谢稳定v4-1.zip
- 79e09efba17ad6cb50253b529448c863.jpg
- 证件照处理的Python脚本
- 一个简单的图像加密和解密脚本
- 基于稀疏梯度场的非局部图像去噪算法及其在图像增强中的应用
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
- 1
- 2
前往页