import datetime
import json
from operator import length_hint
import time
from django.conf import settings
from django.shortcuts import render, redirect
from django.contrib import messages
from news.models import Comments, News, User, Category
from django.http import JsonResponse
from django.core.paginator import Paginator # Django内置分页功能模块
from django.core import serializers
import os
import jieba
import numpy as np
import tensorflow as tf
import re
from gensim.models import KeyedVectors
# #加载预训练词向量
# cn_model = KeyedVectors.load_word2vec_format('/Users/lynn/Desktop/mysite/sgns.weibo.word.bz2', binary=False)
# embedding_dim_c = cn_model['山东大学'].shape[0]
# print("评论模型加载完毕")
# n_model = KeyedVectors.load_word2vec_format('/Users/lynn/Desktop/mysite/sgns.sogou.word.bz2', binary=False)
# embedding_dim_n = n_model['山东大学'].shape[0]
# print("新闻模型加载完毕")
# 文本处理(去除不必要的标签)
def remove_tags(text):
clean_text = re.compile(r'<[^>]+>')
return clean_text.sub('', text)
# 用于清理文本
def clean_text(x):
x = str(x)
x.replace('/>', ' /> ')
for punct in "/-'":
x = x.replace(punct, '')
for punct in ' 一…了':
x = x.replace(punct, '')
for punct in '&':
x = x.replace(punct, f' {punct} ')
for punct in '?!.,"#$%\'()*+-/:;<=>@[\\]^_`{|}~丨「」|①④()、|:|' + '“”’':
x = x.replace(punct, '')
return x
def data_process(train_reviews, max_len, cn_model, embedding_dim):
print("评论:" + train_reviews[0])
# 进行分词和tokenize
train_tokenize = []
for text in train_reviews:
text = remove_tags(text)
text = clean_text(text)
cut = jieba.cut(text)
cut_list = [i for i in cut]
for i, word in enumerate(cut_list):
try:
cut_list[i] = cn_model.key_to_index[word]
except KeyError:
cut_list[i] = 0
train_tokenize.append(cut_list)
# 反索引化功能
def reverse_tokens(tokens):
text = ''
for i in tokens:
if i != 0:
text = text + cn_model.index_to_key[i]
else:
text = text + ''
return text
reverse = reverse_tokens(train_tokenize[0])
print("反索引化的文本为:" + reverse)
print("原始文本:" + train_reviews[0])
# 选取频率最高的50000词
num_words = 50000
embedding_matrix = np.zeros((num_words, embedding_dim))
for i in range(num_words):
embedding_matrix[i, :] = cn_model[cn_model.index_to_key[i]]
embedding_matrix = embedding_matrix.astype('float32')
print(np.sum(cn_model[cn_model.index_to_key[333]] == embedding_matrix[333]))
print(embedding_matrix.shape)
# 填充和修剪
train_pad = tf.keras.preprocessing.sequence.pad_sequences(train_tokenize, maxlen=max_len, padding='post', truncating='post')
# 超出50000个词向量的词用0代替
train_pad[train_pad >= num_words] = 0
return train_pad
context={
'user_num':User.objects.count(),
'comment_num':Comments.objects.count(),
'news_num':News.objects.count()
}
def index(request):
# 用户登录
if request.method == "POST":
username = request.POST.get('username', None)
password = request.POST.get('password', None)
if username and password: # 确保用户名和密码都不为空
username = username.strip()
try:
user = User.objects.get(user_name=username)
if user.password == password:
messages.add_message(request, messages.INFO, "登录成功!")
request.session['is_login'] = True
request.session['user_id'] = user.user_id
request.session['user_name'] = user.user_name
request.session['is_admin'] = user.is_admin
request.session['login_time'] = str(datetime.datetime.now())[0:19]
return redirect('/index')
else:
messages.add_message(request, messages.INFO, "密码不正确")
except:
return redirect('/index')
# 新闻显示
physical=[]
economy=[]
entertain=[]
education=[]
technique=[]
policy=[]
news=News.objects.all()
for new in news:
if new.category_id==3:
physical.append(new)
elif new.category_id == 5:
economy.append(new)
elif new.category_id==4:
entertain.append(new)
elif new.category_id==7:
education.append(new)
elif new.category_id==8:
technique.append(new)
elif new.category_id==1:
policy.append(new)
news_show={'physical':physical[:5],'economy':economy[:18],'entertain':entertain[:18],
'education':education[:40], 'technique':technique[:18], 'policy':policy[:18]}
return render(request, 'index.html', news_show)
# 退出登录
def logout(request):
request.session.flush()
messages.add_message(request, messages.INFO, "已退出登录!")
return redirect('/index')
# 类别界面
def newsModule(request, category_id):
newsList=[]
news = News.objects.filter(category_id=category_id).all()
n=0
for new in news:
data=dict()
data['id']=new.news_id
data['title']=new.n_title
data['time']=str(new.n_time)[0:19]
data['content']=new.n_content[0:150]+'...'
newsList.append(data)
n+=1
if n==6:
break
return render(request, 'newsModule.html', {'newsList':newsList, "category_id":category_id})
def newsShow(request, news_id):
news = News.objects.filter(news_id=news_id).all()
for new in news:
category=Category.objects.filter(category_id=new.category_id).all()
for c in category:
newsContent={
'id':new.news_id,
'title':new.n_title,
'author':new.author,
'time':str(new.n_time)[0:19],
'content':new.n_content,
'category':new.category_id,
'category_name':c.category_name,
'img':new.img
}
comments=News.objects.get(news_id=news_id).comments_set.all()
name_list=[]
for comment in comments:
name_list.append(User.objects.get(user_id=comment.user_id).user_name)
comment_list=zip(name_list, comments)
#提交用户评论
if request.method == "POST":
user_id=request.session.get('user_id')
if user_id is not None:
content = request.POST.get('content', None)
# 确定类别id
id_list=[]
for c in Comments.objects.all():
id_list.append(c.comment_id)
comment_id=max_id(id_list)
Comments.objects.create(comment_id=comment_id+1,
comment_content=content,
comment_time=str(datetime.datetime.now())[0:19],
comment_senti=3,
news_id=news_id,
user_id=user_id)
else:
messages.add_message(request, messages.INFO, "请登录后发表评论")
return redirect('/newsShow/'+str(news_id))
return render(request, 'newsShow.html', {'newsContent':newsContent, 'comment_list':comment_list})
def search(request):
categories=Category.objects.all()
return render(request, 'search.html',{'categories':categories})
# 新闻筛选
def searchData(request):
category = request.GET.get("data[category]")
year= request.GET.get("data[year]")
senti= request.GET.get("data[senti]")
news_list=News.objects.filter(n_senti=2).all()
news_list=News.objects.all()
if category=='' and year=='' and senti=='':
news_list=Ne
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
python期末大作业课程设计基于情感分析的新闻管理系统源码。纯手打项目 python期末大作业课程设计基于情感分析的新闻管理系统源码。纯手打项目python期末大作业课程设计基于情感分析的新闻管理系统源码。纯手打项目python期末大作业课程设计基于情感分析的新闻管理系统源码。纯手打项目python期末大作业课程设计基于情感分析的新闻管理系统源码。纯手打项目python期末大作业课程设计基于情感分析的新闻管理系统源码。纯手打项目python期末大作业课程设计基于情感分析的新闻管理系统源码。纯手打项目python期末大作业课程设计基于情感分析的新闻管理系统源码。纯手打项目python期末大作业课程设计基于情感分析的新闻管理系统源码。纯手打项目python期末大作业课程设计基于情感分析的新闻管理系统源码。纯手打项目python期末大作业课程设计基于情感分析的新闻管理系统源码。纯手打项目python期末大作业课程设计基于情感分析的新闻管理系统源码。纯手打项目
资源推荐
资源详情
资源评论
收起资源包目录
python期末大作业课程设计基于情感分析的新闻管理系统源码.zip (101个子文件)
layui.css 78KB
layer.css 14KB
laydate.css 7KB
common.css 1KB
code.css 1KB
search.css 637B
index.css 30B
iconfont.eot 46KB
loading-0.gif 6KB
loading-2.gif 2KB
loading-1.gif 701B
.gitignore 47B
index.html 18KB
user.html 10KB
news.html 10KB
category.html 7KB
background.html 7KB
search.html 6KB
comments.html 6KB
senti.html 4KB
newsModule.html 3KB
base.html 3KB
test.html 3KB
newsShow.html 2KB
newsComments.html 1KB
login.html 1KB
pagination.html 973B
mysite.iml 551B
engin.jpg 9.12MB
huzni.jpg 6.17MB
sal.jpg 4.36MB
mau.jpg 3.61MB
art.jpg 3.24MB
amber.jpg 2.19MB
nikita.jpg 1.9MB
user.jpg 852KB
dar.jpg 483KB
lisa.jpg 416KB
layui.js 284KB
common.js 353B
search.js 2B
.name 10B
xinwen.png 17KB
icon.png 11KB
icon-ext.png 6KB
views.py 27KB
settings.py 4KB
0005_comments_news_review_delete_comment_delete_new.py 3KB
data_process.py 3KB
models.py 2KB
0001_initial.py 2KB
urls.py 2KB
0002_user_alter_comment_comment_time_alter_new_new_time.py 1KB
0010_comments_news_comments_user_and_more.py 1KB
0007_alter_comments_comment_senti_and_more.py 1KB
0009_news_img_alter_comments_comment_time_and_more.py 961B
0004_user_is_admin_alter_comment_comment_time_and_more.py 889B
0008_remove_news_n_intro_alter_comments_comment_time_and_more.py 835B
0003_alter_comment_comment_time_alter_new_new_time.py 742B
0006_alter_comments_comment_time_alter_news_n_time.py 740B
0011_alter_comments_comment_time_alter_news_n_time.py 732B
manage.py 662B
wsgi.py 389B
asgi.py 389B
admin.py 175B
apps.py 140B
views.py 72B
__init__.py 67B
tests.py 60B
__init__.py 0B
__init__.py 0B
views.cpython-38.pyc 20KB
models.cpython-38.pyc 3KB
settings.cpython-38.pyc 2KB
0005_comments_news_review_delete_comment_delete_new.cpython-38.pyc 2KB
urls.cpython-38.pyc 2KB
0001_initial.cpython-38.pyc 2KB
0002_user_alter_comment_comment_time_alter_new_new_time.cpython-38.pyc 1KB
0010_comments_news_comments_user_and_more.cpython-38.pyc 1KB
0009_news_img_alter_comments_comment_time_and_more.cpython-38.pyc 964B
0007_alter_comments_comment_senti_and_more.cpython-38.pyc 940B
0004_user_is_admin_alter_comment_comment_time_and_more.cpython-38.pyc 909B
0008_remove_news_n_intro_alter_comments_comment_time_and_more.cpython-38.pyc 877B
0003_alter_comment_comment_time_alter_new_new_time.cpython-38.pyc 826B
0006_alter_comments_comment_time_alter_news_n_time.cpython-38.pyc 821B
0011_alter_comments_comment_time_alter_news_n_time.cpython-38.pyc 811B
wsgi.cpython-38.pyc 537B
views.cpython-38.pyc 408B
apps.cpython-38.pyc 407B
admin.cpython-38.pyc 263B
__init__.cpython-38.pyc 185B
__init__.cpython-38.pyc 145B
__init__.cpython-38.pyc 134B
iconfont.svg 299KB
iconfont.ttf 45KB
iconfont.woff 30KB
iconfont.woff2 25KB
misc.xml 301B
modules.xml 264B
vcs.xml 180B
共 101 条
- 1
- 2
资源评论
- y1y1111112022-09-21请问这大致步骤时啥呀
- m0_684320712023-12-15感谢大佬分享的资源,对我启发很大,给了我新的灵感。
- m0_590906782022-12-09资源很受用,资源主总结的很全面,内容与描述一致,解决了我当下的问题。
- lyqh20192023-04-15超赞的资源,感谢资源主分享,大家一起进步!
- lemon_coffee2023-05-31资源很实用,对我启发很大,有很好的参考价值,内容详细。
程序员张小妍
- 粉丝: 1w+
- 资源: 3474
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功