# Image-Recognition-system
✨ **基于 3D 卷积神经网络(CNN)的阿尔兹海默智能诊断 Web 应用**
简单医学影像识别系统,图像识别可视化界面,OCR,快速部署深度学习模型为网页应用,Web 预测系统,图像识别前端网页,图像识别 Demo 展示-Pywebio。AI 人工智能图像识别-Pytorch;nii 医学影像处理;ADNI 数据集。100%纯 Python 代码,轻量化,易复现
🚩[Readme in English](./README.en.md)
[个人网站:www.bytesc.top](http://www.bytesc.top) 包含在线演示
[个人博客:blog.bytesc.top](http://blog.bytesc.top)
🔔 如有项目相关问题,欢迎在本项目提出`issue`,我一般会在 24 小时内回复。
## 功能简介
- 1, 根据脑部 MRI 医学影像智能诊断阿尔兹海默病
- 2, 使用纯 python 编写,轻量化,易复现,易部署
- 3, 代码可读性高,核心部分有极详细注释
## 界面展示
- 上传图像
![image](./readme_img/1.png)
- 返回结果
![image](./readme_img/2.png)
- 模型输出图表
![image](./readme_img/3.png)
- 查看上传的图像
![image](./readme_img/3-1.png)
## 如何使用
python 版本 3.9
需要 `4GB` 以上内存
先安装依赖
```bash
pip install -r requirement.txt
```
zlzheimer-diagnostic-system.py 是项目入口,运行此文件即可启动服务器
```bash
python zlzheimer-diagnostic-system.py
```
复制链接到浏览器打开
![image](./readme_img/4.png)
点击”Demo“即可进入 Web 界面
![image](./readme_img/5.png)
之后,可以点击“使用示例图像”使用默认的测试样例。也可以上传.nii 图像文件上传测试。
我在 [`lqdata`仓库](https://github.com/bytesc/lqdata) 提供了少量示例图像数据。
```bash
git clone https://github.com/bytesc/lqdata.git
```
- 如果上传图像后报错,可能需要在根目录下手动创建文件夹`uploaded_img`
## 项目结构
```
.
│ zlzheimer-diagnostic-system.py
│ datasets.py
│ model.py
│ train.py
│ myModel_109.pth
│ README.md
│ requirements.txt
│
├─demodata
│ │ demo.nii
├─readme_img
└─uploaded_img
```
- zlzheimer-diagnostic-system.py 项目主文件,用于启动 Web 应用
- datasets.py 处理数据集
- model.py 定义模型
- train.py 训练模型
- myModel_109.pth 训练好的模型
- readme_img 文件夹存放上传的医学影像和渲染的图片
- demodata 文件夹用于存放一些医学影像文件,用于测试
## 分类器核心代码
```python
from torch import nn
import torch
class ClassificationModel3D(nn.Module):
"""分类器模型"""
def __init__(self, dropout=0.4, dropout2=0.4):
nn.Module.__init__(self)
# 定义四个Conv3d层
self.Conv_1 = nn.Conv3d(1, 8, 3) # 输入通道数为1,输出通道数为8,卷积核大小为3x3x3
self.Conv_2 = nn.Conv3d(8, 16, 3) # 输入通道数为8,输出通道数为16,卷积核大小为3x3x3
self.Conv_3 = nn.Conv3d(16, 32, 3) # 输入通道数为16,输出通道数为32,卷积核大小为3x3x3
self.Conv_4 = nn.Conv3d(32, 64, 3) # 输入通道数为32,输出通道数为64,卷积核大小为3x3x3
# 定义四个BatchNorm3d层,每个卷积层后面跟着一个BatchNorm3d层
self.Conv_1_bn = nn.BatchNorm3d(8)
self.Conv_2_bn = nn.BatchNorm3d(16)
self.Conv_3_bn = nn.BatchNorm3d(32)
self.Conv_4_bn = nn.BatchNorm3d(64)
# 定义四个MaxPool3d层,每个卷积层后面跟着一个MaxPool3d层
self.Conv_1_mp = nn.MaxPool3d(2) # 池化核大小为2
self.Conv_2_mp = nn.MaxPool3d(3) # 池化核大小为3
self.Conv_3_mp = nn.MaxPool3d(2) # 池化核大小为2
self.Conv_4_mp = nn.MaxPool3d(3) # 池化核大小为3
# 定义两个全连接层
self.dense_1 = nn.Linear(4800, 128) # 输入维度为4800,输出维度为128
self.dense_2 = nn.Linear(128, 5) # 输入维度为128,输出维度为5。因为这是一个五分类问题,所以最终需要输出维度为5
# 定义ReLU激活函数和dropout层
self.relu = nn.ReLU()
self.dropout = nn.Dropout(dropout) # 防止过拟合
self.dropout2 = nn.Dropout(dropout2) # 增强鲁棒性
def forward(self, x):
# 第一层卷积层
x = self.relu(self.Conv_1_bn(self.Conv_1(x)))
"""
这行代码是对输入 x 进行卷积、批归一化和 ReLU 激活函数的操作。
self.Conv_1(x) 对输入 x 进行 3D 卷积操作,输出一个特征图。
self.Conv_1_bn(...) 对卷积输出的特征图进行批归一化操作,得到归一化后的特征图。
self.relu(...) 对归一化的特征图进行 ReLU 激活函数操作,得到激活后的特征图。
整个操作的作用是提取输入 x 中的特征,并将其非线性化,使得网络能够更好地学习这些特征。这里使用了批归一化的技术,可以加速模型的训练过程并提高模型的泛化能力。最终得到的输出结果是经过卷积、批归一化和 ReLU 激活函数处理后的特征图 x。
"""
# 第一层卷积层的最大池化
x = self.Conv_1_mp(x)
"""
这行代码是对输入 x 进行最大池化操作,将特征图的大小缩小一半。
self.Conv_1_mp(...) 对输入 x 进行最大池化操作,池化核大小为 2。
池化操作会将特征图中每个池化窗口内的最大值提取出来,作为输出特征图的对应位置的值,从而将特征图的大小缩小一半。
最大池化操作可以帮助网络实现空间不变性,使得网络在输入发生轻微变化时仍能识别出相同的特征。在这个模型中,经过最大池化后的特征图 x 会传递到下一层卷积层中进行特征提取和非线性化处理。
"""
# 第二层卷积层
x = self.relu(self.Conv_2_bn(self.Conv_2(x)))
# 第二层卷积层的最大池化
x = self.Conv_2_mp(x)
# 第三层卷积层
x = self.relu(self.Conv_3_bn(self.Conv_3(x)))
# 第三层卷积层的最大池化
x = self.Conv_3_mp(x)
# 第四层卷积层
x = self.relu(self.Conv_4_bn(self.Conv_4(x)))
# 第四层卷积层的最大池化
x = self.Conv_4_mp(x)
# 将张量展平为一维向量
x = x.view(x.size(0), -1)
"""
这行代码是将输入张量 x 展平为一维向量。
x.size(0) 得到输入张量 x 的第一个维度的大小,也就是张量的批次大小。
-1 表示将第二个维度及其后面的所有维度展平为一维。
x.view(...) 对输入张量 x 进行形状变换,将其展平为一维向量。
这个操作的作用是将经过卷积和池化处理后的特征图 x 变为一维向量,以便于传递到全连接层进行分类或回归等任务。展平后的向量大小为 (batch_size, num_features),其中 batch_size 是输入张量的批次大小,num_features 是展平后的向量元素个数,也就是经过卷积和池化处理后的特征数量。
"""
# dropout层
x = self.dropout(x)
"""
这行代码是对输入张量 x 进行 dropout 操作,即以一定概率将输入张量中的部分元素置为零。
self.dropout(...) 对输入张量 x 进行 dropout 操作,丢弃概率为 dropout。
dropout 操作会以一定概率将输入张量中的部分元素置为零,从而达到随机失活的目的。这样做可以减少过拟合,增强模型的泛化能力。
在这个模型中,dropout 操作被应用在全连接层之前,可以帮助模型更好地学习到数据的特征,防止过拟合。最终得到的 x 张量是经过 dropout 操作后的结果,会传递到下一层全连接层进行处理。
"""
# 全连接层1
x = self.relu(self.de
0仰望星空007
- 粉丝: 4633
- 资源: 606
最新资源
- 钢结构焊接连接节点通用图 HUALU 1X02-2010.pdf
- Lecture 11-September 7.pptx
- 国际焊接工程师(IWE)、技术员(IWT)培训教程2006-2007.pdf
- Lecture 12-September 8 (Tutorial).pptx
- Lecture 13-September 10.pptx
- Web网页设计期末大作业(完美解决大作业).zip
- Lecture 14-September 13.pptx
- 本科毕业设计-基于Hyperledger Fabric的分布式身份可信认证区块链端,包含链码、网络启动脚本以及网络交互sdk全部资料+详细文档+高分项目.zip
- 基于fisco bcos区块链实现的nft数字藏品网站,用IPFS进行存储,每次交易均进行上链,实现交易不可篡改,可追溯溯源等功能全部资料+详细文档+高分项目.zip
- 基于go实现的区块链工程全部资料+详细文档+高分项目.zip
- Lecture 15-September 14 (Tutorial)-2 marks.pptx
- 基于go语言的区块链实现全部资料+详细文档+高分项目.zip
- 基于powergate的区块链存储项目全部资料+详细文档+高分项目.zip
- ASME B16.34-2009 中文版 阀门.带法兰、有螺纹和焊接端部.pdf
- 基于Nebulas(nas)区块链开发的Dapp全部资料+详细文档+高分项目.zip
- 基于web3.js数字钱包,区块链助力全球权益投资全部资料+详细文档+高分项目.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈