python实现改进的朴素贝叶斯分类器
需积分: 0 78 浏览量
更新于2023-01-14
收藏 14KB PY 举报
本资源使用Python编写朴素贝叶斯分类器,并加以改进
基本原理:拉普拉斯修正的朴素贝叶斯算法在训练过程采用懒惰学习的机制,训练阶段仅存储相关的概率值,预测阶段则通过调用相关概率值进行计算待预测样本的后验概率,最后预测为后验概率取值最大的类别
艺千秋录
- 粉丝: 159
- 资源: 10
最新资源
- 校园失物招领网站:设计与实现的全流程解析
- 基于java的公司固定资产管理系统.doc
- 基于java+springboot+vue+mysql的学科竞赛管理系统 源码+数据库+论文(高分毕业设计).zip
- 人工智能领域计算断层成像技术研究最新进展综述
- 微藻检测10-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- 快速排序算法在Rust语言的实现及其优化
- 2024年超融合网络架构研究与实践报告.pdf
- 埃森哲:2024年360°价值报告(英文版).pdf
- ISACA中国社区2024女性职业现状调查报告.pdf
- 如何看待“适度宽松”的货币政策.pdf
- 双目立体匹配三维重建点云C++ 本工程基于网上开源代码进行修改,内容如下: 1.修改为 VS2015 Debug win32 版本,支持利用特征点和 OpenCV 立体匹配算法进行进行三维重建及显示
- 华为云AI数字人生态赋能千行百业高效发展.pdf
- 金融业数据安全发展与实践报告.pdf
- 候鸟生命线—共筑候鸟迁徙保护网络.pdf
- 2024年全国统一电力市场建设情况及展望报告.pdf
- 2018-2023年粤港澳、京津冀、长三角三大区域高校本科专业调整趋势.pdf