# File generated with ../../loader.py from ShortMsgKAT_SHAKE128.txt.old
# File retrieved from https://github.com/gvanas/KeccakCodePackage on October 20, 2015
# Keccak(SakuraSequential|11)[r=1344, c=256], or SHAKE128 as in FIPS 202 standard
Len = 0
Msg = 00
MD = 7F9C2BA4E88F827D616045507605853ED73B8093F6EFBC88EB1A6EACFA66EF263CB1EEA988004B93103CFB0AEEFD2A686E01FA4A58E8A3639CA8A1E3F9AE57E235B8CC873C23DC62B8D260169AFA2F75AB916A58D974918835D25E6A435085B2BADFD6DFAAC359A5EFBB7BCC4B59D538DF9A04302E10C8BC1CBF1A0B3A5120EA17CDA7CFAD765F5623474D368CCCA8AF0007CD9F5E4C849F167A580B14AABDEFAEE7EEF47CB0FCA9767BE1FDA69419DFB927E9DF07348B196691ABAEB580B32DEF58538B8D23F87732EA63B02B4FA0F4873360E2841928CD60DD4CEE8CC0D4C922A96188D032675C8AC850933C7AFF1533B94C834ADBB69C6115BAD4692D8619F90B0CDF8A7B9C264029AC185B70B83F2801F2F4B3F70C593EA3AEEB613A7F1B1DE33FD75081F592305F2E4526EDC09631B10958F464D889F31BA010250FDA7F1368EC2967FC84EF2AE9AFF268E0B1700AFFC6820B523A3D917135F2DFF2EE06BFE72B3124721D4A26C04E53A75E30E73A7A9C4A95D91C55D495E9F51DD0B5E9D83C6D5E8CE803AA62B8D654DB53D09B8DCFF273CDFEB573FAD8BCD45578BEC2E770D01EFDE86E721A3F7C6CCE275DABE6E2143F1AF18DA7EFDDC4C7B70B5E345DB93CC936BEA323491CCB38A388F546A9FF00DD4E1300B9B2153D2041D205B443E41B45A653F2A5C4492C1ADD544512DDA2529833462B71A41A45BE97290B6F
Len = 8
Msg = CC
MD = 4DD4B0004A7D9E613A0F488B4846F804015F0F8CCDBA5F7C16810BBC5A1C6FB254EFC81969C5EB49E682BABAE02238A31FD2708E418D7B754E21E4B75B65E7D39B5B42D739066E7C63595DAF26C3A6A2F7001EE636C7CB2A6C69B1EC7314A21FF24833EAB61258327517B684928C7444380A6EACD60A6E9400DA37A61050E4CD1FBDD05DDE0901EA2F3F67567F7C9BF7AA53590F29C94CB4226E77C68E1600E4765BEA40B3644B4D1E93EDA6FB0380377C12D5BB9DF4728099E88B55D820C7F827034D809E756831A334C078FC28ACB76B5ADB3BFF6DD659CAA49CC34F726880F293BD3FC132027AE7602242064EFEC4D9D656E069D4DFAE0B40C1D6B6CDB21D89D00E168B0B74D72EBB3B672B57AF3E99C85DA2F41CE70672CD0E0521678FC56EAB6314A0B3AF8B724376C01433D84943A73AF703D293634BC24322992756EE261FFF0D71BFFB8AEBF1026A6A345F2EAED505BC7E02498A3225FC91499DD5F5E30E386557C5FE0A88BC2337C80D7EA42B60622960230577CE800CB63594F619B7DE31E026429B7648C5835AFC00559FA4C7695D6DD9F7B2537A265E9AF7A2C986F8B60E7DC6EB3C4D805A6EEFB6FBB5BFDE21ED7E41CFDBEB02B0BAB76F9998BA1E52815A246B084EFAE7960AFFC2BA5C647E7CC05EF8120568432DFDE1D7246473304808985600A1AFC20B99185AF25E89DC2EC6F4880DC79BAD50DFFCC9EA
Len = 16
Msg = 41FB
MD = 09C9652BB968996A35E4814E27587131F53FD01AB9FE83758ACEB8134FCECA24C84F592CEE43A4476E8853FCAB7DAFEF7B60ECFEBFD70DFCF587B3AF358A286FE3713BF4735A84975BB65E3586C81EA716BFB999626DC973A495A6E0024061387D628E9E59DFD2B39C68C8CEAD665AB43F6D2625A10630761DFB60276EA97B280442462246C6D74A1960A8419A76A37B68449A9E427D6A7EC1FBDF4760847AD6F6F5A08CEFB767CAEB6C2382F4F3D0E49DE4428CD4240635C9136911A82FF0B9C74569A1B7C8AF72AB1EA5F2F6F6A45E3BB08229ADDFA916B18A74F7939C5130152AC8343A10694154FDC6E1570EC7ECABBB01EDDC92EF0BB1B3DB914C74CCE399ACC9B766FD7494B2EF27AC57B80D52535942D55E2DBFAA61CDF3F48759AA612DED11421855AD15FFAB91462A56F873BBAF4FE88457A47B6C0594818D0A9189895239C1429ED8754EEE5498F4D0FB6C9D0DF0EB5316289E72C6AAEB8C61317B409156D4221CE6CFC7C5F39272D87C2D884F88F1B8B3C05CA9E235ED92C7DD7806CDADA7166CC1B9107DA5E6536D4FF111BF9199D6B72AC17D874323D68D76AEC4650F1A4B067C50215362201A7F71116BF6633AF08D712804B83F08A5DC7CCD4315963106D50453D44EFF59C9C652F4A924BE93C0B958EA286B0A4B597899A28C9BD5419C042668AA7B0CFCAC4CDF9260F2824ABF3EE79FEF53EBE3C36DF831
Len = 24
Msg = 1F877C
MD = E2D3144669AB578347FCCA0B572783A269A8CF9ADDA4D87782053D80D5F0FDD27835CF883036E536CE76FEF689A5E7BD646A7FB7D74F090193B2390E614759B7EB7DE915A38328745890B1EF1E7AED78168E996D7AC774D47F8F118B3E00A7BD151131BA3705AE81B57FB7CBFFE114E2F4C3CA152B8874FB906E862840624E02BBF9502E46D8888433A38E82E04CAACB60019222D433E8F2E758BD41AAB395BF83611FD0C3F7FD5173306182449B9A22C4013F2263B41EAC4D0EDA16854961FBAA6AD04A89E72A602AC59659EC2A60C1D020BACC74A711D4254A2ECC5F8F0627B4F72AE130C50590F8B91C52957B795D12DA09BDD40D41E3CD48E30E37FE5FD0B86EB38AB4661085EF515E70231A5F11F9DBF7433763B17D84F36BF42FB6D57789C6DA2BE8D205EAD87BDCC3FA6AC85FCC3E70571EBB2EE4BBBFC04E71B3A88E000464608475C94C7D7EC1BBFCEC980B166096E9BDDE9192C53E350D3B92F3AB0FCEF4E49E05BBBC18B11ECA942C8A0776ED4F293B7FC9B8E7C0303A29A41DE64BFEBD2967875290D471640A914B0775CDFF140B2B66CB099A05F5357C9D5E7F9F1D78B828CCD23FC7CD58329613DE4BE9869B4F2DB18F5792795C34C43D23E2CC5525B4A363A9619AD57E42C36EC459FFAE56B61717EF36AFC9FBE5A72A7D23D435B2EF38A2B0E22AB5DFC8BB8747B6EBF17A63F6368795C6A16DEE05362422
Len = 32
Msg = C1ECFDFC
MD = B5EB987E7CBFC7C9D140AFD20B500E30F2F71188BCE885951F22FBC35DE40E7411311BC8479F895A069600483751295F5C3855474D65436B347608583125A6BD41CA30DC99CB342B72A96F8A2213E98A16BBB9E38A141B4FBA68C1A723D1D578A91B4A1BAFD03B25BD3CFB6D4E1E044637889C6D7AF0209DBB5E10837D5C5991D2766012E7E86A82838B455B96D882B7E25C9072A66DA22B0ACB992FD3CCF5FBC28625B896BDF8D4B7358901D12698FD823FE09AFB4F238631EE1277752F2900E38C7FC163381A01601DBDE8CD30A9A8EE8353DEF6C610B50962D0EC1F4F3EEC2AFD7FCD5296E299C23005960C1AABF3408EDE96DE18E10FDE99774B5BD33092639D8BE9D872130C96311EB6DCA82CC28A62C01E3F9C454251D87FA890284C06187F904CF23CCC62690628C590BC8B84EEE68371D3412DCB5648A634F2359951CD011028E61C28A33EC4E31550C1C0E4123D1091E22D56BD587E73B7DD43C1B431D9547398C5E7EB6C682EA2FD758C86C1222C0D6AB236B8106DAC19338E86CB8F6EC0FB607D70C938CAC172C80079B018BB62939546505B8B6E146A3AD7A35F20D7F9A353F1E6535C23AE93CE8F78C045402E707A664F5918E6836D343240E6112EFA29DFC4D18778C91E2B8530E4FF6E4947623D31DAFAC9B0D194E36C44E10B1A846935684F89ADB44782E8FFF2E3E62B65D18140F10D36CD817F835EB0C0
Len = 40
Msg = 21F134AC57
MD = 7BFBB40DA3704A558291B39E1E56ED9F6F56AE783270AB02A202060C9173FBB0B45575B32348A6ED2C927A39A30DA0A2BBC1807497AD50F27A107754AF62762C0B9E8E62438101DECA378899C521CB76C75D299EDE19BA70E2AB91DA9E39EBDC917355B6FE28EE254C0CD48F3A28FB51766FD58154C98A5C650A4E4841D14E2C8F5BAEBF5AAF2A2120279D2D33214A51CA30C4E05209BBD60106CC343EC867EFFC826CB32A2E736C4AA561FFAECB46FFB74D1B3FD36242244312067C7CEA2EBBCF988E17742C3C80E8DEE6D509997866A308C101214F860512D38E3B6C307C1CE779FD42FDCB9D909A2D6F9DD5A3687708905390479950D55E8890D10D7057863CF006034A6D01D77FB33C0E28B093FE3337BE8416202DC866796739271C9E326199092FA27556C9F40D7E9BAC869B6D7E8018409EA92AF2464C58245E89556DA3E80B6B4200B9E53FC80C93149E3DC4921A5FBE7DF67F1D0B753CBA41B75EE5CBA78A89A2A85A46BBFAA625A40EE62616E68B07C06339717C81B4343760E97E2676C347D9625ECE383FBB8448E7837DC704E2956B18CC506E3BA1416C936BFD66E9AED3A2C7B0A8DEDADB04AB711D147F1C1C83322EC1E6F1468AD770663C7938D4032758462513652498CF124B6357B4F7C7E4DB0D0C0C1B7247875CB6685E0567A8AB8CFBE9383DAEAA27D224CA9C69C07AFA929FFC09A03E165D72153AD2
Len = 48
Msg = C6F50BB74E29
MD = 8D876C67A5CC15A544EB81E93B6FC15713FD1C55D778204EB6AF7086AF3FE97D12B4DD22C7AAD54EB9C9E391B90A7C55ABACC3C81DD1788895F17033D561060E2B9CFFD47974F196C6907907DFDC65CDF33BAAFA7049635A70353D92A56A59ECF0CD291AB9B509D296356E8B0C91983D158DB1568681DE035E56B86EAE32AD3E0193CB816BD2D111C266632DDF907BB276E14880571506E2C328A3EEAA9744210EBFEAD123E241A8C49C92ADA79B718D970F0E8525A60FFE9074E73491E6F0EED1E047EB95CB52C47F6A1BAB77017D020F016B64798E5D7FC360D5FA213D44E5B75C918C9ECBB134CE1DBE13C419DA62326A550AD4A22E171CE75A369BB820CD75FDE01993CA131F302BE7941F7950A9969D78148FE7C45BBD22FE83AD0354194859F2F0DDA1C92F2C8EDFD3F7A9D8F618D0D02222442DF41D858CBB7A46E5B12A0923DCB53587957EE07ED3E1C4A46EB1141CEE394972726DD003239ECFE8FDDC4E58C50359AF3F89FE58F5CD5AEBC0DC6B9D600F3ED08506256F18695DDC1E3B459AD75090F0764FA89E5CCEC98EE0B387B5FB778620BDA72CB3E2AE50DE8B0D6B43F26E13A16FDF08BEA752B457BF486CE427FD17BD4C5890A89AF2C85B292C51CEC75490C1C6DE9D60DC49D3A77EEB7E19002150794234194115BC685E9981F88B0E1D9C6585F2C5F9DC805FF6C7636C1E06D9F5C018F74A2CE92EFF6B26
Len = 56
Msg = 119713CC83EEEF
MD = E2A9537BAC3C4DFC9008C1A7ABA653883D7A1DF35685DBF49ABE5A7E93BF044BC3312A5E4D9743D72BD28ACC16F64AC5090A71761D936FB9DA7C782AF9BC1F636D0E17CB41C7E0E9DFBDB2017ECABA6DBECDCE2AECCE3ED4F59324E74D58D434096356E567B35AC85F7CA9AB80B1C987CE70F998ABE6536FE485A866A22CDCC37DB08CC742B4612121CF34C2D404B37E8EA8D90CA9CFD0C8C6ECB6B44BF73F4D048A0FD85591D8726BE6246DF406472CA
Admin1905
- 粉丝: 70
- 资源: 9
最新资源
- 数据结构与算法:快速排序算法原理与实现
- 使用Java Swing窗口来实现《单词记忆游戏 CS 版》可以提供一个更直观和用户友好的界面 包括显示单词、隐藏单词以及接收用户输入的文本框
- 计算机科学中冒泡排序算法的Python实现与解析
- 堆排序算法详解与Python实现
- matlab实现的各种算法源代码100%好用.zip
- 数据结构-排序算法PDF
- 基于python的双目立体视觉及三维重建、源码+文档+全部资料+高分项目.zip
- 基于AD-Census匹配原理实现双目立体视觉匹配、源码+文档+全部资料+高分项目.zip
- 毕业设计-基于双目立体视觉平台上的图像匹配以及目标物体的距离测量技术,图像特征提取部分研究了 SIFT 算法和 SURF 算法、源码+文档+全部资料+高分项目.zip
- utelnetd rk3588移植
- 基于SIFT特征匹配的双目立体视觉测距、源码+文档+全部资料+高分项目.zip
- 操作系统-pv操作PDF
- FortiClientInstaller-Windows-Enterprise-5.6.5.exe
- 检测人工智能生成的人脸,图像数据集,人脸数据集(包含真实人脸和人工智能生成的合成人脸)
- matlab SPEI干旱指数计算 nc tif各种 数据,多个时间尺度 2000到2023年 1 3 6 12 尺度
- 新建文件夹 (2).zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈