# Yolo v4, v3 and v2 for Windows and Linux
## (neural networks for object detection)
Paper YOLO v4: https://arxiv.org/abs/2004.10934
Paper Scaled YOLO v4: https://arxiv.org/abs/2011.08036 use to reproduce results: [ScaledYOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4)
More details in articles on medium:
- [Scaled_YOLOv4](https://alexeyab84.medium.com/scaled-yolo-v4-is-the-best-neural-network-for-object-detection-on-ms-coco-dataset-39dfa22fa982?source=friends_link&sk=c8553bfed861b1a7932f739d26f487c8)
- [YOLOv4](https://medium.com/@alexeyab84/yolov4-the-most-accurate-real-time-neural-network-on-ms-coco-dataset-73adfd3602fe?source=friends_link&sk=6039748846bbcf1d960c3061542591d7)
Manual: https://github.com/AlexeyAB/darknet/wiki
Discussion:
- [Reddit](https://www.reddit.com/r/MachineLearning/comments/gydxzd/p_yolov4_the_most_accurate_realtime_neural/)
- [Google-groups](https://groups.google.com/forum/#!forum/darknet)
- [Discord](https://discord.gg/zSq8rtW)
About Darknet framework: http://pjreddie.com/darknet/
[![Darknet Continuous Integration](https://github.com/AlexeyAB/darknet/workflows/Darknet%20Continuous%20Integration/badge.svg)](https://github.com/AlexeyAB/darknet/actions?query=workflow%3A%22Darknet+Continuous+Integration%22)
[![CircleCI](https://circleci.com/gh/AlexeyAB/darknet.svg?style=svg)](https://circleci.com/gh/AlexeyAB/darknet)
[![TravisCI](https://travis-ci.org/AlexeyAB/darknet.svg?branch=master)](https://travis-ci.org/AlexeyAB/darknet)
[![Contributors](https://img.shields.io/github/contributors/AlexeyAB/Darknet.svg)](https://github.com/AlexeyAB/darknet/graphs/contributors)
[![License: Unlicense](https://img.shields.io/badge/license-Unlicense-blue.svg)](https://github.com/AlexeyAB/darknet/blob/master/LICENSE)
[![DOI](https://zenodo.org/badge/75388965.svg)](https://zenodo.org/badge/latestdoi/75388965)
[![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2004.10934-B31B1B.svg)](https://arxiv.org/abs/2004.10934)
[![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2011.08036-B31B1B.svg)](https://arxiv.org/abs/2011.08036)
[![colab](https://user-images.githubusercontent.com/4096485/86174089-b2709f80-bb29-11ea-9faf-3d8dc668a1a5.png)](https://colab.research.google.com/drive/12QusaaRj_lUwCGDvQNfICpa7kA7_a2dE)
[![colab](https://user-images.githubusercontent.com/4096485/86174097-b56b9000-bb29-11ea-9240-c17f6bacfc34.png)](https://colab.research.google.com/drive/1_GdoqCJWXsChrOiY8sZMr_zbr_fH-0Fg)
- [YOLOv4 model zoo](https://github.com/AlexeyAB/darknet/wiki/YOLOv4-model-zoo)
- [Requirements (and how to install dependencies)](#requirements-for-windows-linux-and-macos)
- [Pre-trained models](#pre-trained-models)
- [FAQ - frequently asked questions](https://github.com/AlexeyAB/darknet/wiki/FAQ---frequently-asked-questions)
- [Explanations in issues](https://github.com/AlexeyAB/darknet/issues?q=is%3Aopen+is%3Aissue+label%3AExplanations)
- [Yolo v4 in other frameworks (TensorRT, TensorFlow, PyTorch, OpenVINO, OpenCV-dnn, TVM,...)](#yolo-v4-in-other-frameworks)
- [Datasets](#datasets)
- [Yolo v4, v3 and v2 for Windows and Linux](#yolo-v4-v3-and-v2-for-windows-and-linux)
- [(neural networks for object detection)](#neural-networks-for-object-detection)
- [GeForce RTX 2080 Ti](#geforce-rtx-2080-ti)
- [Youtube video of results](#youtube-video-of-results)
- [How to evaluate AP of YOLOv4 on the MS COCO evaluation server](#how-to-evaluate-ap-of-yolov4-on-the-ms-coco-evaluation-server)
- [How to evaluate FPS of YOLOv4 on GPU](#how-to-evaluate-fps-of-yolov4-on-gpu)
- [Pre-trained models](#pre-trained-models)
- [Requirements for Windows, Linux and macOS](#requirements-for-windows-linux-and-macos)
- [Yolo v4 in other frameworks](#yolo-v4-in-other-frameworks)
- [Datasets](#datasets)
- [Improvements in this repository](#improvements-in-this-repository)
- [How to use on the command line](#how-to-use-on-the-command-line)
- [For using network video-camera mjpeg-stream with any Android smartphone](#for-using-network-video-camera-mjpeg-stream-with-any-android-smartphone)
- [How to compile on Linux/macOS (using `CMake`)](#how-to-compile-on-linuxmacos-using-cmake)
- [Using also PowerShell](#using-also-powershell)
- [How to compile on Linux (using `make`)](#how-to-compile-on-linux-using-make)
- [How to compile on Windows (using `CMake`)](#how-to-compile-on-windows-using-cmake)
- [How to compile on Windows (using `vcpkg`)](#how-to-compile-on-windows-using-vcpkg)
- [How to train with multi-GPU](#how-to-train-with-multi-gpu)
- [How to train (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
- [How to train tiny-yolo (to detect your custom objects)](#how-to-train-tiny-yolo-to-detect-your-custom-objects)
- [When should I stop training](#when-should-i-stop-training)
- [Custom object detection](#custom-object-detection)
- [How to improve object detection](#how-to-improve-object-detection)
- [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
- [How to use Yolo as DLL and SO libraries](#how-to-use-yolo-as-dll-and-so-libraries)
- [Citation](#citation)
![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png)
![scaled_yolov4](https://user-images.githubusercontent.com/4096485/112776361-281d8380-9048-11eb-8083-8728b12dcd55.png) AP50:95 - FPS (Tesla V100) Paper: https://arxiv.org/abs/2011.08036
----
![modern_gpus](https://user-images.githubusercontent.com/4096485/82835867-f1c62380-9ecd-11ea-9134-1598ed2abc4b.png) AP50:95 / AP50 - FPS (Tesla V100) Paper: https://arxiv.org/abs/2004.10934
tkDNN-TensorRT accelerates YOLOv4 **~2x** times for batch=1 and **3x-4x** times for batch=4.
- tkDNN: https://github.com/ceccocats/tkDNN
- OpenCV: https://gist.github.com/YashasSamaga/48bdb167303e10f4d07b754888ddbdcf
### GeForce RTX 2080 Ti
| Network Size | Darknet, FPS (avg) | tkDNN TensorRT FP32, FPS | tkDNN TensorRT FP16, FPS | OpenCV FP16, FPS | tkDNN TensorRT FP16 batch=4, FPS | OpenCV FP16 batch=4, FPS | tkDNN Speedup |
|:--------------------------:|:------------------:|-------------------------:|-------------------------:|-----------------:|---------------------------------:|-------------------------:|--------------:|
|320 | 100 | 116 | **202** | 183 | 423 | **430** | **4.3x** |
|416 | 82 | 103 | **162** | 159 | 284 | **294** | **3.6x** |
|512 | 69 | 91 | 134 | **138** | 206 | **216** | **3.1x** |
|608 | 53 | 62 | 103 | **115** | 150 | **150** | **2.8x** |
|Tiny 416 | 443 | 609 | **790** | 773 | **1774** | 1353 | **3.5x** |
|Tiny 416 CPU Core i7 7700HQ | 3.4 | - | - | 42 | - | 39 | **12x** |
- Yolo v4 Full comparison: [map_fps](https://user-images.githubusercontent.com/4096485/80283279-0e303e00-871f-11ea-814c-870967d77fd1.png)
- Yolo v4 tiny comparison: [tiny_fps](https://user-images.githubusercontent.com/4096485/85734112-6e366700-b705-11ea-95d1-fcba0de76d72.png)
- CSPNet: [paper](https://arxiv.org/abs/1911.11929) and [map_fps](https://user-images.githubusercontent.com/4096485/71702416-6645dc00-2de0-11ea-8d65-de7d
MarcoPage
- 粉丝: 4445
- 资源: 8835
最新资源
- 使PHP 集成支付宝当面付功能支付成功后跳转到自定义页面
- LQR控制主动悬架模型:对比不同自由度系统响应及LQG主动悬架性能分析,LQR控制主动悬架模型 LQR控制,基于最优控制的思想,以状态反馈控制的形式,根据自定权重,求解出最优的反馈系数K simul
- 标准IEEE9三机九节点Simulink仿真模型:风电并网、储能与SVC自由开发功能探究,标准IEEE9三机九节点simulink仿真模型,可自加风电并网,储能,SVC,自由开发 ,核心关键词:IEE
- "超低温漂带隙基准电路设计:高电源抑制比、低功耗及详细设计文档PDF",超低温漂带隙基准电路设计,高电源抑制比,低功耗 ppm:2.4 psrr:90dB 电流:14.47uA 1.带设计文档PDF
- 永磁同步电机全速度无位置传感器控制:仿真模型与加权双坐标切换方案,永磁同步电机(pmsm,全速度切无位置传感器控制(高速可以是超螺旋滑模) 低速可以是脉振高频方波注入,量产方案,仿真模型 切有加权切
- 基于tc275 aurix等多平台XCP UDS Bootloader与CCP标定程序开发指南及CANape使用教程与A2L文件生成指南,基于tc275 aurix 1g 2g,tc387,tc377
- wordpress付费查看隐藏内容插件的开发演示和记录,视频操作和代码已上传本页下载查看
- 基于MMC模块化多电平换流器的HVDC直流输电系统仿真研究:载波移相调制下的性能优化与功率控制策略探索,MMC模块化多电平流器,MMC-HVDC直流输电系统,单个桥臂N=10个子模块,采用载波移相调制
- 十字型声子晶体结构设计与特性解析案例分享,十字型声子晶体案例 ,十字型声子晶体案例; 声子晶体结构; 案例分析; 声子晶体特性; 实际应用; 十字型设计,"十字型声子晶体结构案例解析"
- "遗传算法优化编码序列实现天线雷达隐身技术的RCS缩减与远场效果观察",遗传算法优化编码序列,实现编码超表面rcs缩减 使用MATLAB或者Python软件,两个代码都有 能够实现最佳的漫反射效果
- 三相PWM逆变器闭环仿真:电压电流双闭环控制下的系统抗扰性与动态响应研究(基于Matlab Simulink 2021b模型),三相PWM逆变器闭环仿真,电压电流双闭环控制 在0.2s时突加负载测试
- 卡尔曼滤波算法在二阶电池等效电路模型中的应用与优化策略,卡尔曼滤波算法 二阶电池等效电路模型 ,核心关键词:卡尔曼滤波算法; 二阶电池等效电路模型;,"卡尔曼滤波算法在二阶电池等效电路模型中的应用"
- 五相永磁同步电机PI双闭环SVPWM矢量控制模型:复杂精细的电机控制,波形良好且动态响应迅速,五相电机simulink,五相永磁同步电机simulink,PI双闭环SVPWM矢量控制,分十个扇区,波形
- 三菱FX系列PLC温度PID控制程序详解:成熟可靠的应用实践与注释借鉴,含IO图及触摸屏编程指导,三菱FX系列PLC温度PID控制程序(含注释和IO图、三菱触摸屏程序),程序已经应用于设备上,成熟可靠
- 欧姆龙NJ控制程序宝典:涵盖相机、机器人等多功能,LAD编程模板易学易用,逻辑思维程序通用西门子、三菱等项目,欧姆龙NJ的控制程序,里面功能齐全,相机,机器人,RFID,转盘,检测传感器,伺服等,里面
- 单相逆变变频器:基于双闭环控制策略与Pi控制实现动态调整输出频率及电压功能,输入电压可调整,输出峰值电压可设置,matlab2021b环境下运行 ,单相逆变变频器,双闭环控制策略,电压环和电流环均采用
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈