===========
NumPy C-API
===========
::
unsigned int
PyArray_GetNDArrayCVersion(void )
Included at the very first so not auto-grabbed and thus not labeled.
::
int
PyArray_SetNumericOps(PyObject *dict)
Set internal structure with number functions that all arrays will use
::
PyObject *
PyArray_GetNumericOps(void )
Get dictionary showing number functions that all arrays will use
::
int
PyArray_INCREF(PyArrayObject *mp)
For object arrays, increment all internal references.
::
int
PyArray_XDECREF(PyArrayObject *mp)
Decrement all internal references for object arrays.
(or arrays with object fields)
::
void
PyArray_SetStringFunction(PyObject *op, int repr)
Set the array print function to be a Python function.
::
PyArray_Descr *
PyArray_DescrFromType(int type)
Get the PyArray_Descr structure for a type.
::
PyObject *
PyArray_TypeObjectFromType(int type)
Get a typeobject from a type-number -- can return NULL.
New reference
::
char *
PyArray_Zero(PyArrayObject *arr)
Get pointer to zero of correct type for array.
::
char *
PyArray_One(PyArrayObject *arr)
Get pointer to one of correct type for array
::
PyObject *
PyArray_CastToType(PyArrayObject *arr, PyArray_Descr *dtype, int
is_f_order)
For backward compatibility
Cast an array using typecode structure.
steals reference to dtype --- cannot be NULL
This function always makes a copy of arr, even if the dtype
doesn't change.
::
int
PyArray_CastTo(PyArrayObject *out, PyArrayObject *mp)
Cast to an already created array.
::
int
PyArray_CastAnyTo(PyArrayObject *out, PyArrayObject *mp)
Cast to an already created array. Arrays don't have to be "broadcastable"
Only requirement is they have the same number of elements.
::
int
PyArray_CanCastSafely(int fromtype, int totype)
Check the type coercion rules.
::
npy_bool
PyArray_CanCastTo(PyArray_Descr *from, PyArray_Descr *to)
leaves reference count alone --- cannot be NULL
PyArray_CanCastTypeTo is equivalent to this, but adds a 'casting'
parameter.
::
int
PyArray_ObjectType(PyObject *op, int minimum_type)
Return the typecode of the array a Python object would be converted to
Returns the type number the result should have, or NPY_NOTYPE on error.
::
PyArray_Descr *
PyArray_DescrFromObject(PyObject *op, PyArray_Descr *mintype)
new reference -- accepts NULL for mintype
::
PyArrayObject **
PyArray_ConvertToCommonType(PyObject *op, int *retn)
This function is only used in one place within NumPy and should
generally be avoided. It is provided mainly for backward compatibility.
The user of the function has to free the returned array.
::
PyArray_Descr *
PyArray_DescrFromScalar(PyObject *sc)
Return descr object from array scalar.
New reference
::
PyArray_Descr *
PyArray_DescrFromTypeObject(PyObject *type)
::
npy_intp
PyArray_Size(PyObject *op)
Compute the size of an array (in number of items)
::
PyObject *
PyArray_Scalar(void *data, PyArray_Descr *descr, PyObject *base)
Get scalar-equivalent to a region of memory described by a descriptor.
::
PyObject *
PyArray_FromScalar(PyObject *scalar, PyArray_Descr *outcode)
Get 0-dim array from scalar
0-dim array from array-scalar object
always contains a copy of the data
unless outcode is NULL, it is of void type and the referrer does
not own it either.
steals reference to outcode
::
void
PyArray_ScalarAsCtype(PyObject *scalar, void *ctypeptr)
Convert to c-type
no error checking is performed -- ctypeptr must be same type as scalar
in case of flexible type, the data is not copied
into ctypeptr which is expected to be a pointer to pointer
::
int
PyArray_CastScalarToCtype(PyObject *scalar, void
*ctypeptr, PyArray_Descr *outcode)
Cast Scalar to c-type
The output buffer must be large-enough to receive the value
Even for flexible types which is different from ScalarAsCtype
where only a reference for flexible types is returned
This may not work right on narrow builds for NumPy unicode scalars.
::
int
PyArray_CastScalarDirect(PyObject *scalar, PyArray_Descr
*indescr, void *ctypeptr, int outtype)
Cast Scalar to c-type
::
PyObject *
PyArray_ScalarFromObject(PyObject *object)
Get an Array Scalar From a Python Object
Returns NULL if unsuccessful but error is only set if another error occurred.
Currently only Numeric-like object supported.
::
PyArray_VectorUnaryFunc *
PyArray_GetCastFunc(PyArray_Descr *descr, int type_num)
Get a cast function to cast from the input descriptor to the
output type_number (must be a registered data-type).
Returns NULL if un-successful.
::
PyObject *
PyArray_FromDims(int NPY_UNUSED(nd) , int *NPY_UNUSED(d) , int
NPY_UNUSED(type) )
Deprecated, use PyArray_SimpleNew instead.
::
PyObject *
PyArray_FromDimsAndDataAndDescr(int NPY_UNUSED(nd) , int
*NPY_UNUSED(d) , PyArray_Descr
*descr, char *NPY_UNUSED(data) )
Deprecated, use PyArray_NewFromDescr instead.
::
PyObject *
PyArray_FromAny(PyObject *op, PyArray_Descr *newtype, int
min_depth, int max_depth, int flags, PyObject
*context)
Does not check for NPY_ARRAY_ENSURECOPY and NPY_ARRAY_NOTSWAPPED in flags
Steals a reference to newtype --- which can be NULL
::
PyObject *
PyArray_EnsureArray(PyObject *op)
This is a quick wrapper around
PyArray_FromAny(op, NULL, 0, 0, NPY_ARRAY_ENSUREARRAY, NULL)
that special cases Arrays and PyArray_Scalars up front
It *steals a reference* to the object
It also guarantees that the result is PyArray_Type
Because it decrefs op if any conversion needs to take place
so it can be used like PyArray_EnsureArray(some_function(...))
::
PyObject *
PyArray_EnsureAnyArray(PyObject *op)
::
PyObject *
PyArray_FromFile(FILE *fp, PyArray_Descr *dtype, npy_intp num, char
*sep)
Given a ``FILE *`` pointer ``fp``, and a ``PyArray_Descr``, return an
array corresponding to the data encoded in that file.
The reference to `dtype` is stolen (it is possible that the passed in
dtype is not held on to).
The number of elements to read is given as ``num``; if it is < 0, then
then as many as possible are read.
If ``sep`` is NULL or empty, then binary data is assumed, else
text data, with ``sep`` as the separator between elements. Whitespace in
the separator matches any length of whitespace in the text, and a match
for whitespace around the separator is added.
For memory-mapped files, use the buffer interface. No more data than
necessary is read by this routine.
::
PyObject *
PyArray_FromString(char *data, npy_intp slen, PyArray_Descr
*dtype, npy_intp num, char *sep)
Given a pointer to a string ``data``, a string length ``slen``, and
a ``PyArray_Descr``, return an array corresponding to the data
encoded in that string.
If the dtype is NULL, the default array type is used (double).
If non-null, the reference is stolen.
If ``slen`` is < 0, then the end of string is used for text data.
It is an error for ``slen`` to be < 0 for binary data (since embedded NULLs
would be the norm).
The number of elements to read is given as ``num``; if it is < 0, then
then as many as possible are read.
If ``sep`` is NULL or empty, then binary data is assumed, else
text data, with ``sep`` as the separator between elements. Whitespace in
the separator matches any length of whitespace in the text, and a match
for whitespace around the separator is added.
::
PyObject *
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
redis desktop manager是一款功能强大的redis数据库管理软件,可以帮助用户轻松快速的查看与操控整个数据库。redis desktop manager不仅拥有十分简洁直观的操作界面,而且所有功能信息一目了然,是广大用户必备的数据库管理神器。 redis desktop manager具有操作简单、方便快捷、功能完善、性能稳定等优点,支持用户采用可视化操作界面对数据库进行各方面工作,不管是新手用户还是专业的开发人员,该软件都是你管理数据库的最佳帮手。
资源详情
资源评论
资源推荐
收起资源包目录
redis桌面可视化管理 工具 (2000个子文件)
nosetests.1 17KB
Abidjan 148B
Accra 816B
Acre 628B
ACT 2KB
Adak 2KB
Addis_Ababa 251B
Adelaide 2KB
Aden 165B
Alaska 2KB
Aleutian 2KB
Algiers 735B
Almaty 997B
Amman 2KB
Amsterdam 3KB
Anadyr 1KB
Anchorage 2KB
Andorra 2KB
Anguilla 148B
Antananarivo 251B
Antigua 148B
Apia 1KB
Aqtau 983B
Aqtobe 1011B
Araguaina 884B
Arizona 328B
Aruba 186B
Ashgabat 619B
Ashkhabad 619B
Asmara 251B
Asmera 251B
Astrakhan 1KB
Asuncion 2KB
Athens 2KB
Atikokan 336B
Atka 2KB
Atlantic 3KB
Atyrau 991B
Auckland 2KB
Azores 3KB
Baghdad 983B
Bahia 1024B
Bahia_Banderas 2KB
Bahrain 199B
BajaNorte 2KB
BajaSur 1KB
Baku 1KB
Bamako 148B
Bangkok 199B
Bangui 149B
Banjul 148B
Barbados 314B
Barnaul 1KB
Beirut 2KB
Belem 576B
Belfast 4KB
Belgrade 2KB
Belize 948B
Berlin 2KB
Bermuda 2KB
Beulah 2KB
Bishkek 983B
Bissau 194B
Blanc-Sablon 298B
Blantyre 149B
Boa_Vista 632B
Bogota 246B
Boise 2KB
Bougainville 268B
Bratislava 2KB
Brazzaville 149B
Brisbane 433B
Broken_Hill 2KB
Brunei 203B
Brussels 3KB
Bucharest 2KB
Budapest 2KB
Buenos_Aires 1KB
Buenos_Aires 1KB
Bujumbura 149B
Busingen 2KB
fortranobject.c 35KB
wrapmodule.c 8KB
gfortran_vs2003_hack.c 83B
Cairo 2KB
Calcutta 285B
Cambridge_Bay 2KB
Campo_Grande 1KB
Canary 2KB
Canberra 2KB
Cancun 782B
Cape_Verde 270B
Caracas 264B
Casablanca 2KB
Casey 297B
Catamarca 1KB
Catamarca 1KB
Cayenne 198B
Cayman 182B
Center 2KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
coding部落
- 粉丝: 24
- 资源: 53
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论0