<div align="center">
<p>
<a href="https://ultralytics.com/events/yolovision" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
</p>
[涓枃](https://docs.ultralytics.com/zh) | [頃滉淡鞏碷(https://docs.ultralytics.com/ko) | [鏃ユ湰瑾瀅(https://docs.ultralytics.com/ja) | [袪褍褋褋泻懈泄](https://docs.ultralytics.com/ru) | [Deutsch](https://docs.ultralytics.com/de) | [Fran莽ais](https://docs.ultralytics.com/fr) | [Espa帽ol](https://docs.ultralytics.com/es) | [Portugu锚s](https://docs.ultralytics.com/pt) | [T眉rk莽e](https://docs.ultralytics.com/tr) | [Ti岷縩g Vi峄噒](https://docs.ultralytics.com/vi) | [丕賱毓乇亘賷丞](https://docs.ultralytics.com/ar)
<div>
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<a href="https://ultralytics.com/discord"><img alt="Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a> <a href="https://community.ultralytics.com"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a> <a href="https://reddit.com/r/ultralytics"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
<br>
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
YOLOv5 馃殌 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
We hope that the resources here will help you get the most out of YOLOv5. Please browse the YOLOv5 <a href="https://docs.ultralytics.com/yolov5">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/yolov5/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="2%" alt="Ultralytics BiliBili"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
<br>
## <div align="center">YOLOv8 馃殌 NEW</div>
We are thrilled to announce the launch of Ultralytics YOLOv8 馃殌, our NEW cutting-edge, state-of-the-art (SOTA) model released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.
See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
```bash
pip install ultralytics
```
<div align="center">
<a href="https://ultralytics.com/yolo" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5) for full documentation on training, testing and deployment. See below for quickstart examples.
<details open>
<summary>Install</summary>
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a [**Python>=3.8.0**](https://www.python.org/) environment, including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
</details>
<details>
<summary>Inference</summary>
YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom
# Images
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screensho
没有合适的资源?快使用搜索试试~ 我知道了~
基于YOLOv5,提供一个图形化操作界面,方便用户通过图形化界面,进行采集图像、制作数据集、训练模型和部署模型等操作,为学生学习深度学习技术、工程师利用深度学习技术解决问题提供便利。
1.界面翻译:界面文字和终端打印内容均支持中英文切换。
2.图像采集:在相机开启和选择保存文件夹的情况下,允许实时拍照。
3.图像处理:对指定文件夹中的所有图像进行备份、重命名、修改像素。
4.图像标注:标注图像中的目标物体,并将标注信息保存到标注文件中。
5.数据集制作:检测数据集格式、划分数据集比例、生成数据集配置文件。
6.模型训练:选择预训练模型、设置训练参数、生成训练指令并启动训练。
7.模型部署:选择模型、生成部署指令并启动推理。
8.终端打印:打印用户的操作过程以及相关报错信息。
收起资源包目录
飞令(FeeLink):一站式训练和部署YOLOv5版本号:V2.1更新日期:2024年9月16日 (527个子文件)
LICENSE.APACHE 10KB
LICENSE.BSD 1KB
CITATION.cff 393B
libopenblas64__v0.3.23-293-gc2f4bdbb-gcc_10_3_0-2bde3a66a51006b2b53eb373ff767a3f.dll 36.4MB
opencv_videoio_ffmpeg4100_64.dll 25.17MB
opencv_videoio_ffmpeg490_64.dll 25.1MB
opengl32sw.dll 19.68MB
Qt6Gui.dll 8.63MB
python312.dll 7.12MB
Qt6Widgets.dll 6.27MB
Qt6Core.dll 6.1MB
Qt6Quick.dll 5.5MB
Qt6Pdf.dll 5.05MB
libcrypto-3-x64.dll 5.05MB
Qt6Qml.dll 4.88MB
Qt6OpenGL.dll 1.88MB
Qt6Network.dll 1.66MB
ucrtbase.dll 1.29MB
qdirect2d.dll 962KB
qwindows.dll 890KB
libssl-3-x64.dll 772KB
Qt6QmlModels.dll 716KB
MSVCP140.dll 562KB
MSVCP140.dll 556KB
MSVCP140.dll 556KB
qjpeg.dll 554KB
qwebp.dll 532KB
Qt6Svg.dll 495KB
Qt6VirtualKeyboard.dll 485KB
qtiff.dll 420KB
libexpat.dll 404KB
shiboken6.abi3.dll 336KB
qopensslbackend.dll 313KB
qschannelbackend.dll 257KB
pyside6.abi3.dll 238KB
qmodernwindowsstyle.dll 194KB
liblzma.dll 194KB
MSVCP140_2.dll 185KB
VCRUNTIME140.dll 117KB
qoffscreen.dll 107KB
qcertonlybackend.dll 102KB
qtuiotouchplugin.dll 100KB
VCRUNTIME140.dll 98KB
VCRUNTIME140.dll 98KB
zlib.dll 97KB
LIBBZ2.dll 81KB
api-ms-win-crt-private-l1-1-0.dll 74KB
qnetworklistmanager.dll 71KB
qsvgicon.dll 71KB
python3.dll 67KB
qminimal.dll 60KB
qicns.dll 56KB
VCRUNTIME140_1.dll 48KB
qgif.dll 48KB
qico.dll 46KB
qpdf.dll 42KB
VCRUNTIME140_1.dll 40KB
VCRUNTIME140_1.dll 40KB
ffi.dll 39KB
qsvg.dll 39KB
qtga.dll 38KB
qwbmp.dll 37KB
qtvirtualkeyboardplugin.dll 34KB
api-ms-win-crt-math-l1-1-0.dll 30KB
MSVCP140_1.dll 27KB
api-ms-win-crt-stdio-l1-1-0.dll 26KB
api-ms-win-crt-string-l1-1-0.dll 26KB
api-ms-win-crt-runtime-l1-1-0.dll 26KB
api-ms-win-core-file-l1-1-0.dll 25KB
api-ms-win-crt-convert-l1-1-0.dll 25KB
api-ms-win-core-processthreads-l1-1-1.dll 22KB
api-ms-win-core-interlocked-l1-1-0.dll 22KB
api-ms-win-core-synch-l1-2-0.dll 22KB
api-ms-win-core-heap-l1-1-0.dll 22KB
api-ms-win-core-file-l1-2-0.dll 22KB
api-ms-win-crt-locale-l1-1-0.dll 22KB
api-ms-win-core-string-l1-1-0.dll 22KB
api-ms-win-crt-conio-l1-1-0.dll 22KB
api-ms-win-core-handle-l1-1-0.dll 22KB
api-ms-win-core-file-l2-1-0.dll 22KB
api-ms-win-core-console-l1-1-0.dll 22KB
api-ms-win-core-localization-l1-2-0.dll 22KB
api-ms-win-core-processthreads-l1-1-0.dll 22KB
api-ms-win-core-memory-l1-1-0.dll 22KB
api-ms-win-core-errorhandling-l1-1-0.dll 22KB
api-ms-win-core-util-l1-1-0.dll 22KB
api-ms-win-core-fibers-l1-1-0.dll 22KB
api-ms-win-core-namedpipe-l1-1-0.dll 22KB
api-ms-win-core-datetime-l1-1-0.dll 22KB
api-ms-win-core-processenvironment-l1-1-0.dll 22KB
api-ms-win-crt-heap-l1-1-0.dll 22KB
api-ms-win-core-sysinfo-l1-2-0.dll 21KB
api-ms-win-core-debug-l1-1-0.dll 21KB
api-ms-win-core-fibers-l1-1-1.dll 21KB
api-ms-win-core-kernel32-legacy-l1-1-1.dll 21KB
api-ms-win-core-sysinfo-l1-1-0.dll 21KB
api-ms-win-core-libraryloader-l1-1-0.dll 21KB
api-ms-win-crt-filesystem-l1-1-0.dll 21KB
api-ms-win-core-rtlsupport-l1-1-0.dll 21KB
api-ms-win-core-timezone-l1-1-0.dll 21KB
共 527 条
- 1
- 2
- 3
- 4
- 5
- 6
资源推荐
资源预览
资源评论
118 浏览量
2013-03-12 上传
127 浏览量
151 浏览量
190 浏览量
188 浏览量
175 浏览量
165 浏览量
193 浏览量
146 浏览量
2021-04-03 上传
184 浏览量
119 浏览量
2023-10-06 上传
5星 · 资源好评率100%
5星 · 资源好评率100%
169 浏览量
5星 · 资源好评率100%
194 浏览量
2023-03-16 上传
5星 · 资源好评率100%
180 浏览量
5星 · 资源好评率100%
101 浏览量
5星 · 资源好评率100%
126 浏览量
5星 · 资源好评率100%
2023-12-27 上传
资源评论
ice小游
- 粉丝: 1w+
- 资源: 5
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- windows下物理内存查看/更改工具(附C源码)~
- 基于springboot+vue的甘肃非物质文化网站的设计与开发(Java毕业设计,附源码,部署教程).zip
- 基于springboot+vue的购物推荐网站的设计与实现(Java毕业设计,附源码,部署教程).zip
- 基于springboot+vue的高校学科竞赛平台(Java毕业设计,附源码,部署教程).zip
- Ubuntu离线安装docker
- windows下物理内存查看/更改工具(附VB源码)~
- windows下物理端口读写工具(附C源码)~
- C++毕业设计基于QT的仿宝石迷阵游戏项目源码+文档说明(高分项目)
- windows下物理端口读写工具(附VB源码)~
- 毕业设计基于C++和QT实现的仿宝石迷阵游戏项目源码+文档说明(高分毕设)
- Java8 jdk安装包
- 多模态大语言模型中视觉表示优化法则及其高效搜索政策(视觉与语言融合领域的前沿探索)
- 自动驾驶技术中域控制单元(DCU)的核心作用与发展前景
- Java SE基础++++
- 车载软件开发中的ARXML文件解析及其应用价值
- 车载数据结构领域:ARXML vs JSON的技术比较及其在AUTOSAR中的应用
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功