/******************************************************************/
/* 基于基本遗传算法的函数最优化 SGA.C */
/* A Function Optimizer using Simple Genetic Algorithm */
/* developed from the Pascal SGA code presented by David E.Goldberg */
/* 同济大学计算机系 王小平 2000年5月 */
/******************************************************************/
#include <stdio.h>
#include<graphics.h>
#include <math.h>
#include "graph.c"
/* 全局变量 */
struct individual /* 个体*/
{
unsigned *chrom; /* 染色体 */
double fitness; /* 个体适应度*/
double varible; /* 个体对应的变量值*/
int xsite; /* 交叉位置 */
int parent[2]; /* 父个体 */
int *utility; /* 特定数据指针变量 */
};
struct bestever /* 最佳个体*/
{
unsigned *chrom; /* 最佳个体染色体*/
double fitness; /* 最佳个体适应度 */
double varible; /* 最佳个体对应的变量值 */
int generation; /* 最佳个体生成代 */
};
struct individual *oldpop; /* 当前代种群 */
struct individual *newpop; /* 新一代种群 */
struct bestever bestfit; /* 最佳个体 */
double sumfitness; /* 种群中个体适应度累计 */
double max; /* 种群中个体最大适应度 */
double avg; /* 种群中个体平均适应度 */
double min; /* 种群中个体最小适应度 */
float pcross; /* 交叉概率 */
float pmutation; /* 变异概率 */
int popsize; /* 种群大小 */
int lchrom; /* 染色体长度*/
int chromsize; /* 存储一染色体所需字节数 */
int gen; /* 当前世代数 */
int maxgen; /* 最大世代数 */
int run; /* 当前运行次数 */
int maxruns; /* 总运行次数 */
int printstrings; /* 输出染色体编码的判断,0 -- 不输出, 1 -- 输出 */
int nmutation; /* 当前代变异发生次数 */
int ncross; /* 当前代交叉发生次数 */
/* 随机数发生器使用的静态变量 */
static double oldrand[55];
static int jrand;
static double rndx2;
static int rndcalcflag;
/* 输出文件指针 */
FILE *outfp ;
/* 函数定义 */
void advance_random();
int flip(float);rnd(int, int);
void randomize();
double randomnormaldeviate();
float randomperc(),rndreal(float,float);
void warmup_random(float);
void initialize(),initdata(),initpop();
void initreport(),generation(),initmalloc();
void freeall(),nomemory(char *),report();
void writepop(),writechrom(unsigned *);
void preselect();
void statistics(struct individual *);
void title(),repchar (FILE *,char *,int);
void skip(FILE *,int);
int select();
void objfunc(struct individual *);
int crossover (unsigned *, unsigned *, unsigned *, unsigned *);
void mutation(unsigned *);
void initialize() /* 遗传算法初始化 */
{
/* 键盘输入遗传算法参数 */
initdata();
/* 确定染色体的字节长度 */
chromsize = (lchrom/(8*sizeof(unsigned)));
if(lchrom%(8*sizeof(unsigned))) chromsize++;
/*分配给全局数据结构空间 */
initmalloc();
/* 初始化随机数发生器 */
randomize();
/* 初始化全局计数变量和一些数值*/
nmutation = 0;
ncross = 0;
bestfit.fitness = 0.0;
bestfit.generation = 0;
/* 初始化种群,并统计计算结果 */
initpop();
statistics(oldpop);
initreport();
}
void initdata() /* 遗传算法参数输入 */
{
char answer[2];
setcolor(9);
disp_hz16("种群大小(20-100):",100,150,20);
gscanf(320,150,9,15,4,"%d", &popsize);
if((popsize%2) != 0)
{
fprintf(outfp, "种群大小已设置为偶数\n");
popsize++;
};
setcolor(9);
disp_hz16("染色体长度(8-40):",100,180,20);
gscanf(320,180,9,15,4,"%d", &lchrom);
setcolor(9);
disp_hz16("是否输出染色体编码(y/n):",100,210,20);
printstrings=1;
gscanf(320,210,9,15,4,"%s", answer);
if(strncmp(answer,"n",1) == 0) printstrings = 0;
setcolor(9);
disp_hz16("最大世代数(100-300):",100,240,20);
gscanf(320,240,9,15,4,"%d", &maxgen);
setcolor(9);
disp_hz16("交叉率(0.2-0.9):",100,270,20);
gscanf(320,270,9,15,5,"%f", &pcross);
setcolor(9);
disp_hz16("变异率(0.01-0.1):",100,300,20);
gscanf(320,300,9,15,5,"%f", &pmutation);
}
void initpop() /* 随机初始化种群 */
{
int j, j1, k, stop;
unsigned mask = 1;
for(j = 0; j < popsize; j++)
{
for(k = 0; k < chromsize; k++)
{
oldpop[j].chrom[k] = 0;
if(k == (chromsize-1))
stop = lchrom - (k*(8*sizeof(unsigned)));
else
stop =8*sizeof(unsigned);
for(j1 = 1; j1 <= stop; j1++)
{
oldpop[j].chrom[k] = oldpop[j].chrom[k]<<1;
if(flip(0.5))
oldpop[j].chrom[k] = oldpop[j].chrom[k]|mask;
}
}
oldpop[j].parent[0] = 0; /* 初始父个体信息 */
oldpop[j].parent[1] = 0;
oldpop[j].xsite = 0;
objfunc(&(oldpop[j])); /* 计算初始适应度*/
}
}
void initreport() /* 初始参数输出 */
{
void skip();
skip(outfp,1);
fprintf(outfp," 基本遗传算法参数\n");
fprintf(outfp," -------------------------------------------------\n");
fprintf(outfp," 种群大小(popsize) = %d\n",popsize);
fprintf(outfp," 染色体长度(lchrom) = %d\n",lchrom);
fprintf(outfp," 最大进化代数(maxgen) = %d\n",maxgen);
fprintf(outfp," 交叉概率(pcross) = %f\n", pcross);
fprintf(outfp," 变异概率(pmutation) = %f\n", pmutation);
fprintf(outfp," -------------------------------------------------\n");
skip(outfp,1);
fflush(outfp);
}
void generation()
{
int mate1, mate2, jcross, j = 0;
/* 每代运算前进行预选 */
preselect();
/* 选择, 交叉, 变异 */
do
{
/* 挑选交叉配对 */
mate1 = select();
mate2 = select();
/* 交叉和变异 */
jcross = crossover(oldpop[mate1].chrom, oldpop[mate2].chrom, newpop[j].chrom, newpop[j+1].chrom);
mutation(newpop[j].chrom);
mutation(newpop[j+1].chrom);
/* 解码, 计算适应度 */
objfunc(&(newpop[j]));
/*记录亲子关系和交叉位置 */
newpop[j].parent[0] = mate1+1;
newpop[j].xsite = jcross;
newpop[j].parent[1] = mate2+1;
objfunc(&(newpop[j+1]));
newpop[j+1].parent[0] = mate1+1;
newpop[j+1].xsite = jcross;
newpop[j+1].parent[1] = mate2+1;
j = j + 2;
}
while(j < (popsize-1));
}
void initmalloc() /*为全局数据变量分配空间 */
{
unsigned nbytes;
char *malloc();
int j;
/* 分配给当前代和新一代种群内存空间 */
nbytes = popsize*sizeof(struct individual);
if((oldpop = (struct individual *) malloc(nbytes)) == NULL)
nomemory("oldpop");
if((newpop = (struct individual *) malloc(nbytes)) == NULL)
nomemory("newpop");
/* 分配给染色体内存空间 */
nbytes = chromsize*sizeof(unsigned);
for(j = 0; j < popsize; j++)
{
if((oldpop[j].chrom = (unsigned *) malloc(nbytes)) == NULL)
nomemory("oldpop chromosomes");
if((newpop[j].chrom = (unsigned *) malloc(nbytes)) == NULL)
nomemory("newpop chromosomes");
}
if((bestfit.chrom = (unsigned *) malloc(nbytes)) == NULL)
nomemory("bestfit chromosome");
}
void freeall() /* 释放内存空间 */
{
int i;
for(i = 0; i < popsize; i++)
{
free(oldpop[i].chrom);
free(newpop[i].chr