%***********************************************************************
% 2-D FDTD TE code with PML absorbing boundary conditions
%***********************************************************************
%
% Program author: Susan C. Hagness
% Department of Electrical and Computer Engineering
% University of Wisconsin-Madison
% 1415 Engineering Drive
% Madison, WI 53706-1691
% hagness@engr.wisc.edu
%
% Copyright 2005
%
% This MATLAB M-file implements the finite-difference time-domain
% solution of Maxwell's curl equations over a two-dimensional
% Cartesian space lattice comprised of uniform square grid cells.
%
% To illustrate the algorithm, a 6-cm-diameter metal cylindrical
% scatterer in free space is modeled. The source excitation is
% a Gaussian pulse with a carrier frequency of 5 GHz.
%
% The grid resolution (dx = 3 mm) was chosen to provide 20 samples
% per wavelength at the center frequency of the pulse (which in turn
% provides approximately 10 samples per wavelength at the high end
% of the excitation spectrum, around 10 GHz).
%
% The computational domain is truncated using the perfectly matched
% layer (PML) absorbing boundary conditions. The formulation used
% in this code is based on the original split-field Berenger PML.
% Exponential time stepping is implemented in the PML regions.
% The PML regions are labeled as shown in the following diagram:
%
% ----------------------------------------------
% | | BACK PML | |
% ----------------------------------------------
% |L | /| R|
% |E | (ib,jb) | I|
% |F | | G|
% |T | | H|
% | | MAIN GRID | T|
% |P | | |
% |M | | P|
% |L | (1,1) | M|
% | |/ | L|
% ----------------------------------------------
% | | FRONT PML | |
% ----------------------------------------------
%
% To execute this M-file, type "fdtd2D" at the MATLAB prompt.
%
% This code has been tested in the following Matlab environments:
% Matlab version 6.1.0.450 Release 12.1 (May 18, 2001)
% Matlab version 6.5.1.199709 Release 13 Service Pack 1 (August 4, 2003)
% Matlab version 7.0.0.19920 R14 (May 6, 2004)
% Matlab version 7.0.1.24704 R14 Service Pack 1 (September 13, 2004)
% Matlab version 7.0.4.365 R14 Service Pack 2 (January 29, 2005)
%
% Note: if you are using Matlab version 6.x, you may wish to make
% one or more of the following modifications to this code:
% --uncomment line numbers 418 and 419
% --comment out line numbers 610, 619, and 628
%
%***********************************************************************
clear
%***********************************************************************
% Fundamental constants
%***********************************************************************
cc=2.99792458e8; %speed of light in free space
muz=4.0*pi*1.0e-7; %permeability of free space
epsz=1.0/(cc*cc*muz); %permittivity of free space
etaz=sqrt(muz/epsz);
freq=5.0e+9; %center frequency of source excitation
lambda=cc/freq; %center wavelength of source excitation
omega=2.0*pi*freq;
%***********************************************************************
% Grid parameters
%***********************************************************************
ie=100; %number of grid cells in x-direction
je=50; %number of grid cells in y-direction
ib=ie+1;
jb=je+1;
is=15; %location of z-directed hard source
js=je/2; %location of z-directed hard source
dx=3.0e-3; %space increment of square lattice
dt=dx/(2.0*cc); %time step
nmax=300; %total number of time steps
iebc=8; %thickness of left and right PML region
jebc=8; %thickness of front and back PML region
rmax=1.0e-7;
orderbc=2;
ibbc=iebc+1;
jbbc=jebc+1;
iefbc=ie+2*iebc;
jefbc=je+2*jebc;
ibfbc=iefbc+1;
jbfbc=jefbc+1;
%***********************************************************************
% Material parameters
%***********************************************************************
media=2;
eps=[1.0 1.0];
sig=[0.0 1.0e+7];
mur=[1.0 1.0];
sim=[0.0 0.0];
%***********************************************************************
% Wave excitation
%***********************************************************************
rtau=160.0e-12;
tau=rtau/dt;
delay=3*tau;
source=zeros(1,nmax);
for n=1:7.0*tau
source(n)=sin(omega*(n-delay)*dt)*exp(-((n-delay)^2/tau^2));
end
%***********************************************************************
% Field arrays
%***********************************************************************
ex=zeros(ie,jb); %fields in main grid
ey=zeros(ib,je);
hz=zeros(ie,je);
exbcf=zeros(iefbc,jebc); %fields in front PML region
eybcf=zeros(ibfbc,jebc);
hzxbcf=zeros(iefbc,jebc);
hzybcf=zeros(iefbc,jebc);
exbcb=zeros(iefbc,jbbc); %fields in back PML region
eybcb=zeros(ibfbc,jebc);
hzxbcb=zeros(iefbc,jebc);
hzybcb=zeros(iefbc,jebc);
exbcl=zeros(iebc,jb); %fields in left PML region
eybcl=zeros(iebc,je);
hzxbcl=zeros(iebc,je);
hzybcl=zeros(iebc,je);
exbcr=zeros(iebc,jb); %fields in right PML region
eybcr=zeros(ibbc,je);
hzxbcr=zeros(iebc,je);
hzybcr=zeros(iebc,je);
%***********************************************************************
% Updating coefficients
%***********************************************************************
for i=1:media
eaf =dt*sig(i)/(2.0*epsz*eps(i));
ca(i)=(1.0-eaf)/(1.0+eaf);
cb(i)=dt/epsz/eps(i)/dx/(1.0+eaf);
haf =dt*sim(i)/(2.0*muz*mur(i));
da(i)=(1.0-haf)/(1.0+haf);
db(i)=dt/muz/mur(i)/dx/(1.0+haf);
end
%***********************************************************************
% Geometry specification (main grid)
%***********************************************************************
% Initialize entire main grid to free space
caex(1:ie,1:jb)=ca(1);
cbex(1:ie,1:jb)=cb(1);
caey(1:ib,1:je)=ca(1);
cbey(1:ib,1:je)=cb(1);
dahz(1:ie,1:je)=da(1);
dbhz(1:ie,1:je)=db(1);
% Add metal cylinder
diam=20; % diameter of cylinder: 6 cm
rad=diam/2.0; % radius of cylinder: 3 cm
icenter=4*ie/5; % i-coordinate of cylinder's center
jcenter=je/2; % j-coordinate of cylinder's center
for i=1:ie
for j=1:je
dist2=(i+0.5-icenter)^2 + (j-jcenter)^2;
if dist2 <= rad^2
caex(i,j)=ca(2);
cbex(i,j)=cb(2);
end
dist2=(i-icenter)^2 + (j+0.5-jcenter)^2;
if dist2 <= rad^2
caey(i,j)=ca(2);
cbey(i,j)=cb(2);
end
end
end
%***********************************************************************
% Fill the PML regions
%
% PML theory describes a continuous grading of the material properties
% over the PML region. In the FDTD grid it is necessary to discretize
% the grading by averaging the material properties over a grid cell
% width centered on each field component. As an example of the
% implementation of this averaging, we take the integral of the
% continuous sigma(x) in the PML region
%
% sigma_i = integral(sigma(x))/dx
%
% where the integral is over a single grid cell width in x,