/* Some systems (e.g., SunOS) have header files that erroneously declare
* inet_addr(), inet_ntoa() and gethostbyname() as taking no arguments.
* This confuses C++. To overcome this, we use our own routines,
* implemented in C.
*/
#ifndef _NET_COMMON_H
#include "NetCommon.h"
#endif
#include <stdio.h>
#ifdef VXWORKS
#include <inetLib.h>
#endif
unsigned our_inet_addr(cp)
char const* cp;
{
return inet_addr(cp);
}
char *
our_inet_ntoa(in)
struct in_addr in;
{
#ifndef VXWORKS
return inet_ntoa(in);
#else
/* according the man pages of inet_ntoa :
NOTES
The return value from inet_ntoa() points to a buffer which
is overwritten on each call. This buffer is implemented as
thread-specific data in multithreaded applications.
the vxworks version of inet_ntoa allocates a buffer for each
ip address string, and does not reuse the same buffer.
this is merely to simulate the same behaviour (not multithread
safe though):
*/
static char result[INET_ADDR_LEN];
inet_ntoa_b(in, result);
return(result);
#endif
}
#if defined(__WIN32__) || defined(_WIN32)
#ifndef IMN_PIM
#define WS_VERSION_CHOICE1 0x202/*MAKEWORD(2,2)*/
#define WS_VERSION_CHOICE2 0x101/*MAKEWORD(1,1)*/
int initializeWinsockIfNecessary(void) {
/* We need to call an initialization routine before
* we can do anything with winsock. (How fucking lame!):
*/
static int _haveInitializedWinsock = 0;
WSADATA wsadata;
if (!_haveInitializedWinsock) {
if ((WSAStartup(WS_VERSION_CHOICE1, &wsadata) != 0)
&& ((WSAStartup(WS_VERSION_CHOICE2, &wsadata)) != 0)) {
return 0; /* error in initialization */
}
if ((wsadata.wVersion != WS_VERSION_CHOICE1)
&& (wsadata.wVersion != WS_VERSION_CHOICE2)) {
WSACleanup();
return 0; /* desired Winsock version was not available */
}
_haveInitializedWinsock = 1;
}
return 1;
}
#else
int initializeWinsockIfNecessary(void) { return 1; }
#endif
#else
#define initializeWinsockIfNecessary() 1
#endif
#ifndef NULL
#define NULL 0
#endif
#if !defined(VXWORKS)
struct hostent* our_gethostbyname(name)
char* name;
{
if (!initializeWinsockIfNecessary()) return NULL;
return (struct hostent*) gethostbyname(name);
}
#endif
#ifdef USE_SYSTEM_RANDOM
#include <stdlib.h>
long our_random() {
#if defined(__WIN32__) || defined(_WIN32)
return rand();
#else
return random();
#endif
}
void our_srandom(unsigned int x) {
#if defined(__WIN32__) || defined(_WIN32)
return srand(x);
#else
return srandom(x);
#endif
}
#else
/*
* random.c:
*
* An improved random number generation package. In addition to the standard
* rand()/srand() like interface, this package also has a special state info
* interface. The our_initstate() routine is called with a seed, an array of
* bytes, and a count of how many bytes are being passed in; this array is
* then initialized to contain information for random number generation with
* that much state information. Good sizes for the amount of state
* information are 32, 64, 128, and 256 bytes. The state can be switched by
* calling the our_setstate() routine with the same array as was initiallized
* with our_initstate(). By default, the package runs with 128 bytes of state
* information and generates far better random numbers than a linear
* congruential generator. If the amount of state information is less than
* 32 bytes, a simple linear congruential R.N.G. is used.
*
* Internally, the state information is treated as an array of longs; the
* zeroeth element of the array is the type of R.N.G. being used (small
* integer); the remainder of the array is the state information for the
* R.N.G. Thus, 32 bytes of state information will give 7 longs worth of
* state information, which will allow a degree seven polynomial. (Note:
* the zeroeth word of state information also has some other information
* stored in it -- see our_setstate() for details).
*
* The random number generation technique is a linear feedback shift register
* approach, employing trinomials (since there are fewer terms to sum up that
* way). In this approach, the least significant bit of all the numbers in
* the state table will act as a linear feedback shift register, and will
* have period 2^deg - 1 (where deg is the degree of the polynomial being
* used, assuming that the polynomial is irreducible and primitive). The
* higher order bits will have longer periods, since their values are also
* influenced by pseudo-random carries out of the lower bits. The total
* period of the generator is approximately deg*(2**deg - 1); thus doubling
* the amount of state information has a vast influence on the period of the
* generator. Note: the deg*(2**deg - 1) is an approximation only good for
* large deg, when the period of the shift register is the dominant factor.
* With deg equal to seven, the period is actually much longer than the
* 7*(2**7 - 1) predicted by this formula.
*/
/*
* For each of the currently supported random number generators, we have a
* break value on the amount of state information (you need at least this
* many bytes of state info to support this random number generator), a degree
* for the polynomial (actually a trinomial) that the R.N.G. is based on, and
* the separation between the two lower order coefficients of the trinomial.
*/
#define TYPE_0 0 /* linear congruential */
#define BREAK_0 8
#define DEG_0 0
#define SEP_0 0
#define TYPE_1 1 /* x**7 + x**3 + 1 */
#define BREAK_1 32
#define DEG_1 7
#define SEP_1 3
#define TYPE_2 2 /* x**15 + x + 1 */
#define BREAK_2 64
#define DEG_2 15
#define SEP_2 1
#define TYPE_3 3 /* x**31 + x**3 + 1 */
#define BREAK_3 128
#define DEG_3 31
#define SEP_3 3
#define TYPE_4 4 /* x**63 + x + 1 */
#define BREAK_4 256
#define DEG_4 63
#define SEP_4 1
/*
* Array versions of the above information to make code run faster --
* relies on fact that TYPE_i == i.
*/
#define MAX_TYPES 5 /* max number of types above */
static int const degrees[MAX_TYPES] = { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
static int const seps [MAX_TYPES] = { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
/*
* Initially, everything is set up as if from:
*
* our_initstate(1, &randtbl, 128);
*
* Note that this initialization takes advantage of the fact that srandom()
* advances the front and rear pointers 10*rand_deg times, and hence the
* rear pointer which starts at 0 will also end up at zero; thus the zeroeth
* element of the state information, which contains info about the current
* position of the rear pointer is just
*
* MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
*/
static long randtbl[DEG_3 + 1] = {
TYPE_3,
0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342, 0xde3b81e0, 0xdf0a6fb5,
0xf103bc02, 0x48f340fb, 0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86, 0xda672e2a, 0x1588ca88,
0xe369735d, 0x904f35f7, 0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b, 0xf5ad9d0e, 0x8999220b,
0x27fb47b9,
};
/*
* fptr and rptr are two pointers into the state info, a front and a rear
* pointer. These two pointers are always rand_sep places aparts, as they
* cycle cyclically through the state information. (Yes, this does mean we
* could get away with just one pointer, but the code for random() is more
* efficient this way). The pointers are left positioned as they would be
* from the call
*
* our_initstate(1, randtbl, 128);
*
* (The position of the rear pointer, rptr, is really 0 (as explained above
* in the initialization of randtbl) because the state table pointer is set
* to point to randtbl[1] (as explained below).
*/
static long* fptr = &randtbl[SEP_3 + 1];
static long* rptr = &randtbl[1];
/*
* The following things are the pointer to the state information table, the
* type of the current generator, the degree of the current polynomial being
* used, and the separation between the
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
This code forms a set of C++ libraries for multimedia streaming, using open standard protocols (RTP/RTCP, RTSP, SIP).
资源推荐
资源详情
资源评论
收起资源包目录
live.2006.12.08.tar.gz_RTCP_RTP/RTCP_open_sip_sip rtp (358个子文件)
config.macosx-before-version-10.4 406B
config.aix 433B
config.alpha 429B
config.armlinux 566B
config.bfin_uclinux 651B
win32config.Borland 1KB
config.bsplinux 692B
inet.c 14KB
rtcp_from_spec.c 10KB
our_md5.c 10KB
our_md5hl.c 2KB
genWindowsMakefiles.cmd 847B
configure 377B
COPYING 24KB
COPYING 24KB
COPYING 24KB
COPYING 24KB
COPYING 24KB
COPYING 24KB
COPYING 24KB
MP3InternalsHuffmanTable.cpp 108KB
RTSPClient.cpp 76KB
QuickTimeFileSink.cpp 75KB
RTSPServer.cpp 41KB
playCommon.cpp 41KB
MediaSession.cpp 39KB
H263plusVideoStreamParser.cpp 35KB
RTCP.cpp 30KB
SIPClient.cpp 30KB
MP3InternalsHuffman.cpp 30KB
MP3Internals.cpp 26KB
MPEG1or2Demux.cpp 25KB
AMRAudioRTPSource.cpp 25KB
AVIFileSink.cpp 24KB
MPEG4VideoStreamFramer.cpp 23KB
GroupsockHelper.cpp 22KB
MP3ADU.cpp 20KB
Groupsock.cpp 19KB
MultiFramedRTPSource.cpp 19KB
OnDemandServerMediaSubsession.cpp 18KB
MPEG2TransportStreamMultiplexor.cpp 17KB
MP3ADUinterleaving.cpp 16KB
JPEGVideoRTPSource.cpp 16KB
QCELPAudioRTPSource.cpp 16KB
MPEG1or2VideoStreamFramer.cpp 15KB
WindowsAudioInputDevice_mixer.cpp 15KB
MultiFramedRTPSink.cpp 15KB
MP3StreamState.cpp 14KB
RTPInterface.cpp 13KB
uLawAudioFilter.cpp 13KB
ServerMediaSession.cpp 13KB
RTPSource.cpp 12KB
RTPSink.cpp 11KB
WindowsAudioInputDevice_common.cpp 11KB
AC3AudioStreamFramer.cpp 11KB
DarwinInjector.cpp 10KB
vobStreamer.cpp 10KB
QuickTimeGenericRTPSource.cpp 10KB
WAVAudioFileSource.cpp 9KB
MPEG1or2FileServerDemux.cpp 9KB
MPEG4VideoStreamDiscreteFramer.cpp 9KB
MPEG2TransportStreamFromESSource.cpp 9KB
H264VideoRTPSink.cpp 9KB
testOnDemandRTSPServer.cpp 9KB
MPEG2TransportStreamFramer.cpp 9KB
MPEG1or2VideoStreamDiscreteFramer.cpp 8KB
testWAVAudioStreamer.cpp 8KB
MPEG4LATMAudioRTPSource.cpp 8KB
MPEG4GenericRTPSource.cpp 8KB
BasicHashTable.cpp 7KB
testMPEG1or2AudioVideoStreamer.cpp 7KB
testMPEG1or2AudioVideoToDarwin.cpp 7KB
NetAddress.cpp 7KB
WAVAudioFileServerMediaSubsession.cpp 7KB
MPEG1or2AudioStreamFramer.cpp 7KB
testMP3Streamer.cpp 7KB
MPEG1or2VideoRTPSink.cpp 7KB
MP3AudioFileServerMediaSubsession.cpp 6KB
testMPEG4VideoToDarwin.cpp 6KB
StreamParser.cpp 6KB
H264VideoRTPSource.cpp 6KB
MPEGVideoStreamFramer.cpp 6KB
MediaSink.cpp 6KB
ADTSAudioFileSource.cpp 6KB
DelayQueue.cpp 6KB
testMPEG1or2VideoStreamer.cpp 6KB
DynamicRTSPServer.cpp 6KB
AMRAudioFileSource.cpp 6KB
BasicTaskScheduler.cpp 6KB
WindowsAudioInputDevice_noMixer.cpp 5KB
testMPEG2TransportStreamer.cpp 5KB
ByteStreamFileSource.cpp 5KB
testGSMStreamer.cpp 5KB
H263plusVideoFileServerMediaSubsession.cpp 5KB
testMP3Receiver.cpp 5KB
MPEG1or2DemuxedServerMediaSubsession.cpp 5KB
HTTPSink.cpp 5KB
PassiveServerMediaSubsession.cpp 5KB
FramedSource.cpp 5KB
Media.cpp 5KB
共 358 条
- 1
- 2
- 3
- 4
资源评论
- m0_752293832023-09-20资源简直太好了,完美解决了当下遇到的难题,这样的资源很难不支持~
钱亚锋
- 粉丝: 106
- 资源: 1万+
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- YOLO算法-禾本科杂草数据集-4760张图像带标签.zip
- YOLO算法-无人机俯视视角动物数据集-10140张图像带标签-斑马-骆驼-大象-牛-羊.zip
- YOLO算法-挖掘机与火焰数据集-8129张图像带标签-挖掘机.zip
- YOLO算法-塑料数据集-3029张图像带标签-塑料制品-白色塑料.zip
- PyKDL库源码,编译安装PyKDL库
- YOLO算法-红外探测数据集-10573张图像带标签-小型车-人-无人机.zip
- 基于 C++和TCP和WebSocket的即时通信系统设计与实现(源码+文档)
- 电商管理系统项目源代码全套技术资料.zip
- 全国2022年04月高等教育自学考试02326操作系统试题及答案
- YOLO算法-垃圾数据集-3818张图像带标签-可口可乐-百事可乐.zip
- YOLO算法-瓶纸盒合并数据集-1317张图像带标签-纸张-纸箱-瓶子.zip
- YOLO算法-杂草检测项目数据集-3970张图像带标签-杂草.zip
- YOLO算法-杂草检测项目数据集-3853张图像带标签-杂草.zip
- YOLO算法-挖掘机与火焰数据集-7735张图像带标签-挖掘机.zip
- 文旅项目源代码全套技术资料.zip
- YOLO算法-罐头和瓶子数据集-1531张图像带标签-鲜奶-瓶子.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功