import numpy as np
from matplotlib import pyplot as plt
from numpy.fft import fft
import math
def fft_custom(sig, Fs, zero_padding=False, window=None):
if zero_padding:
fft_num = np.power(2, math.ceil(np.log2(len(sig))))
if window:
mag = np.fft.fft(sig * np.hanning(len(sig)), fft_num) * 2 / fft_num
f = np.arange(fft_num) * (Fs / fft_num)
else:
mag = np.fft.fft(sig, fft_num) * 2 / fft_num
f = np.arange(fft_num) * (Fs / fft_num)
else:
fft_num = len(sig)
if window:
mag = np.fft.fft(sig * np.hanning(len(sig)), fft_num) * 2 / fft_num
f = np.arange(fft_num) * (Fs / fft_num)
else:
mag = np.fft.fft(sig, fft_num) * 2 / fft_num
f = np.arange(fft_num) * (Fs / fft_num)
mag[0] /= 2
return f[:int(fft_num / 2)], abs(mag[:int(fft_num / 2)])
def get_octave_band_base_2(start=-23, end=14):
"""以2为基数返回1/3倍频程带"""
bands = list()
for index, i in enumerate(range(start, end)):
central_frequency = 1000 * (2 ** (1 / 3)) ** i
if index == 0:
bands.append([0, central_frequency * np.power(2, 1 / 6)])
else:
bands.append([central_frequency / np.power(2, 1 / 6), central_frequency * np.power(2, 1 / 6)])
return np.asarray(bands)
if __name__ == '__main__':
# 仿真信号
# Fs = 10000
# N = 50000
# n = list(np.arange(N))
# t = np.asarray([temp / Fs for temp in n])
# sig = np.sqrt(2) * np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 18 * t) + np.sin(2 * np.pi * 53 * t) + np.sin(
# 2 * np.pi * 197 * t)
# 实际信号
path = r'C:\Users\Administrator\Desktop\yourfilepath.txt'
Fs = 20833
sig = np.loadtxt(path)
N = len(sig)
n = list(np.arange(N))
t = np.asarray([temp/Fs for temp in n])
# 1 时域内计算声压级
temp = [temp * temp for temp in sig]
p_square_time = np.sum(temp) / len(temp) # 时域内计算的声压总均方值
print("p_square_time: ", p_square_time)
f, mag = fft_custom(sig, Fs)
# 频域内计算声压总均方值
temp = [(temp / np.sqrt(2)) * (temp / np.sqrt(2)) for temp in mag]
p_square_frequency = np.sum(temp)
print("p_square_frequency: ", p_square_frequency)
spl_overall = 10 * np.log10(p_square_time / 0.0000000004)
print("声压级(DB):", spl_overall)
bands = get_octave_band_base_2(start=-21, end=15) # start 和 end 控制带宽
spl_of_bands = list()
f = list(f)
index_start = 0
for band in bands:
index_stop = np.where(f < band[1])[0][-1]
band_frequencies_mag = mag[index_start:index_stop]
temp = [(temp / np.sqrt(2)) * (temp / np.sqrt(2)) for temp in band_frequencies_mag]
p_square_frequency_band = np.sum(temp)
spl_ = 10 * np.log10(p_square_frequency_band / 0.0000000004)
if band[0] <= Fs/2:
spl_of_bands.append([band[0], band[1], spl_])
else:
break
# print("index_start: %d index_stop: %d" % (index_start, index_stop))
index_start = index_stop
# print(band)
plt.figure(1)
plt.subplot(211)
plt.plot(t, sig)
plt.subplot(212)
plt.plot(f, mag)
# plt.show()
spl_values = list()
xticks = list()
for temp in spl_of_bands:
spl_values.append(temp[2])
xticks.append(str(int(temp[1])))
plt.figure(2)
plt.bar(range(len(spl_values)), spl_values, facecolor='b', width=0.8)
plt.title("1/3 octave SPL || Overall SPL is %f " % np.round(spl_overall, 3))
plt.xticks(list(range(len(spl_values))), xticks,rotation=45)
plt.show()
————————————————
评论6