/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "apr.h"
#include "apr_private.h"
#include "apr_atomic.h"
#include "apr_portable.h" /* for get_os_proc */
#include "apr_strings.h"
#include "apr_general.h"
#include "apr_pools.h"
#include "apr_allocator.h"
#include "apr_lib.h"
#include "apr_thread_mutex.h"
#include "apr_hash.h"
#include "apr_time.h"
#define APR_WANT_MEMFUNC
#include "apr_want.h"
#include "apr_env.h"
#if APR_HAVE_STDLIB_H
#include <stdlib.h> /* for malloc, free and abort */
#endif
#if APR_HAVE_UNISTD_H
#include <unistd.h> /* for getpid */
#endif
/*
* Magic numbers
*/
#define MIN_ALLOC 8192
#define MAX_INDEX 20
#define BOUNDARY_INDEX 12
#define BOUNDARY_SIZE (1 << BOUNDARY_INDEX)
/*
* Timing constants for killing subprocesses
* There is a total 3-second delay between sending a SIGINT
* and sending of the final SIGKILL.
* TIMEOUT_INTERVAL should be set to TIMEOUT_USECS / 64
* for the exponetial timeout alogrithm.
*/
#define TIMEOUT_USECS 3000000
#define TIMEOUT_INTERVAL 46875
/*
* Allocator
*
* @note The max_free_index and current_free_index fields are not really
* indices, but quantities of BOUNDARY_SIZE big memory blocks.
*/
struct apr_allocator_t {
/** largest used index into free[], always < MAX_INDEX */
apr_uint32_t max_index;
/** Total size (in BOUNDARY_SIZE multiples) of unused memory before
* blocks are given back. @see apr_allocator_max_free_set().
* @note Initialized to APR_ALLOCATOR_MAX_FREE_UNLIMITED,
* which means to never give back blocks.
*/
apr_uint32_t max_free_index;
/**
* Memory size (in BOUNDARY_SIZE multiples) that currently must be freed
* before blocks are given back. Range: 0..max_free_index
*/
apr_uint32_t current_free_index;
#if APR_HAS_THREADS
apr_thread_mutex_t *mutex;
#endif /* APR_HAS_THREADS */
apr_pool_t *owner;
/**
* Lists of free nodes. Slot 0 is used for oversized nodes,
* and the slots 1..MAX_INDEX-1 contain nodes of sizes
* (i+1) * BOUNDARY_SIZE. Example for BOUNDARY_INDEX == 12:
* slot 0: nodes larger than 81920
* slot 1: size 8192
* slot 2: size 12288
* ...
* slot 19: size 81920
*/
apr_memnode_t *free[MAX_INDEX];
};
#define SIZEOF_ALLOCATOR_T APR_ALIGN_DEFAULT(sizeof(apr_allocator_t))
/*
* Allocator
*/
APR_DECLARE(apr_status_t) apr_allocator_create(apr_allocator_t **allocator)
{
apr_allocator_t *new_allocator;
*allocator = NULL;
if ((new_allocator = malloc(SIZEOF_ALLOCATOR_T)) == NULL)
return APR_ENOMEM;
memset(new_allocator, 0, SIZEOF_ALLOCATOR_T);
new_allocator->max_free_index = APR_ALLOCATOR_MAX_FREE_UNLIMITED;
*allocator = new_allocator;
return APR_SUCCESS;
}
APR_DECLARE(void) apr_allocator_destroy(apr_allocator_t *allocator)
{
apr_uint32_t index;
apr_memnode_t *node, **ref;
for (index = 0; index < MAX_INDEX; index++) {
ref = &allocator->free[index];
while ((node = *ref) != NULL) {
*ref = node->next;
free(node);
}
}
free(allocator);
}
#if APR_HAS_THREADS
APR_DECLARE(void) apr_allocator_mutex_set(apr_allocator_t *allocator,
apr_thread_mutex_t *mutex)
{
allocator->mutex = mutex;
}
APR_DECLARE(apr_thread_mutex_t *) apr_allocator_mutex_get(
apr_allocator_t *allocator)
{
return allocator->mutex;
}
#endif /* APR_HAS_THREADS */
APR_DECLARE(void) apr_allocator_owner_set(apr_allocator_t *allocator,
apr_pool_t *pool)
{
allocator->owner = pool;
}
APR_DECLARE(apr_pool_t *) apr_allocator_owner_get(apr_allocator_t *allocator)
{
return allocator->owner;
}
APR_DECLARE(void) apr_allocator_max_free_set(apr_allocator_t *allocator,
apr_size_t in_size)
{
apr_uint32_t max_free_index;
apr_uint32_t size = (APR_UINT32_TRUNC_CAST)in_size;
#if APR_HAS_THREADS
apr_thread_mutex_t *mutex;
mutex = apr_allocator_mutex_get(allocator);
if (mutex != NULL)
apr_thread_mutex_lock(mutex);
#endif /* APR_HAS_THREADS */
max_free_index = APR_ALIGN(size, BOUNDARY_SIZE) >> BOUNDARY_INDEX;
allocator->current_free_index += max_free_index;
allocator->current_free_index -= allocator->max_free_index;
allocator->max_free_index = max_free_index;
if (allocator->current_free_index > max_free_index)
allocator->current_free_index = max_free_index;
#if APR_HAS_THREADS
if (mutex != NULL)
apr_thread_mutex_unlock(mutex);
#endif
}
static APR_INLINE
apr_memnode_t *allocator_alloc(apr_allocator_t *allocator, apr_size_t size)
{
apr_memnode_t *node, **ref;
apr_uint32_t max_index;
apr_size_t i, index;
/* Round up the block size to the next boundary, but always
* allocate at least a certain size (MIN_ALLOC).
*/
size = APR_ALIGN(size + APR_MEMNODE_T_SIZE, BOUNDARY_SIZE);
if (size < MIN_ALLOC)
size = MIN_ALLOC;
/* Find the index for this node size by
* dividing its size by the boundary size
*/
index = (size >> BOUNDARY_INDEX) - 1;
if (index > APR_UINT32_MAX) {
return NULL;
}
/* First see if there are any nodes in the area we know
* our node will fit into.
*/
if (index <= allocator->max_index) {
#if APR_HAS_THREADS
if (allocator->mutex)
apr_thread_mutex_lock(allocator->mutex);
#endif /* APR_HAS_THREADS */
/* Walk the free list to see if there are
* any nodes on it of the requested size
*
* NOTE: an optimization would be to check
* allocator->free[index] first and if no
* node is present, directly use
* allocator->free[max_index]. This seems
* like overkill though and could cause
* memory waste.
*/
max_index = allocator->max_index;
ref = &allocator->free[index];
i = index;
while (*ref == NULL && i < max_index) {
ref++;
i++;
}
if ((node = *ref) != NULL) {
/* If we have found a node and it doesn't have any
* nodes waiting in line behind it _and_ we are on
* the highest available index, find the new highest
* available index
*/
if ((*ref = node->next) == NULL && i >= max_index) {
do {
ref--;
max_index--;
}
while (*ref == NULL && max_index > 0);
allocator->max_index = max_index;
}
allocator->current_free_index += node->index;
if (allocator->current_free_index > allocator->max_free_index)
allocator->current_free_index = allocator->max_free_index;
#if APR_HAS_THREADS
if (allocator-