function [eigvector1, eigvalue] = LDA(gnd,options,data)
% LDA: Linear Discriminant Analysis
%
% [eigvector, eigvalue] = LDA(gnd, options, data)
%
% Input:
% data - Data matrix. Each row vector of fea is a data point.
% gnd - Colunm vector of the label information for each
% data point.
% options - Struct value in Matlab. The fields in options
% that can be set:
%
% Regu - 1: regularized solution,
% a* = argmax (a'X'WXa)/(a'X'Xa+ReguAlpha*I)
% 0: solve the sinularity problem by SVD
% Default: 0
%
% ReguAlpha - The regularization parameter. Valid
% when Regu==1. Default value is 0.1.
%
% ReguType - 'Ridge': Tikhonov regularization
% 'Custom': User provided
% regularization matrix
% Default: 'Ridge'
% regularizerR - (nFea x nFea) regularization
% matrix which should be provided
% if ReguType is 'Custom'. nFea is
% the feature number of data
% matrix
% Fisherface - 1: Fisherface approach
% PCARatio = nSmp - nClass
% Default: 0
%
% PCARatio - The percentage of principal
% component kept in the PCA
% step. The percentage is
% calculated based on the
% eigenvalue. Default is 1
% (100%, all the non-zero
% eigenvalues will be kept.
% If PCARatio > 1, the PCA step
% will keep exactly PCARatio principle
% components (does not exceed the
% exact number of non-zero components).
%
%
% Output:
% eigvector - Each column is an embedding function, for a new
% data point (row vector) x, y = x*eigvector
% will be the embedding result of x.
% eigvalue - The sorted eigvalue of LDA eigen-problem.
% elapse - Time spent on different steps
%
% Examples:
%
% fea = rand(50,70);
% gnd = [ones(10,1);ones(15,1)*2;ones(10,1)*3;ones(15,1)*4];
% options = [];
% options.dim=dim;
% options.Fisherface = 1;
% [eigvector, eigvalue] = LDA(gnd, options, fea);
% Y = fea*eigvector;
%
%
% See also LPP, constructW, LGE
%
%
%
%Reference:
%
% P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, �Eigenfaces
% vs. fisherfaces: recognition using class specific linear
% projection,? IEEE Transactions on Pattern Analysis and Machine
% Intelligence, vol. 19, no. 7, pp. 711-720, July 1997.
%
% Deng Cai, Xiaofei He, Yuxiao Hu, Jiawei Han, and Thomas Huang,
% "Learning a Spatially Smooth Subspace for Face Recognition", CVPR'2007
%
% Deng Cai, Xiaofei He, Jiawei Han, "SRDA: An Efficient Algorithm for
% Large Scale Discriminant Analysis", IEEE Transactions on Knowledge and
% Data Engineering, 2007.
%
% version 2.1 --June/2007
% version 2.0 --May/2007
% version 1.1 --Feb/2006
% version 1.0 --April/2004
%
% Written by Deng Cai (dengcai2 AT cs.uiuc.edu)
%
if ~exist('data','var')
global data;
end
if (~exist('options','var'))
options = [];
end
if ~isfield(options,'Regu') | ~options.Regu
bPCA = 1;
if ~isfield(options,'PCARatio')
options.PCARatio = 1;
end
else
bPCA = 0;
if ~isfield(options,'ReguType')
options.ReguType = 'Ridge';
end
if ~isfield(options,'ReguAlpha')
options.ReguAlpha = 0.1;
end
end
tmp_T = cputime;
% ====== Initialization
[nSmp,nFea] = size(data);
if length(gnd) ~= nSmp
error('gnd and data mismatch!');
end
classLabel = unique(gnd);
nClass = length(classLabel);
% Dim = nClass - 2;%---------------------------------
if bPCA & isfield(options,'Fisherface') & options.Fisherface
options.PCARatio = nSmp - nClass;
end
if issparse(data)
data = full(data);
end
sampleMean = mean(data,1);
data = (data - repmat(sampleMean,nSmp,1));
bChol = 0;
if bPCA & (nSmp > nFea+1) & (options.PCARatio >= 1)
DPrime = data'*data;
DPrime = max(DPrime,DPrime');
[R,p] = chol(DPrime);
if p == 0
bPCA = 0;
bChol = 1;
end
end
%======================================
% SVD
%======================================
if bPCA
if nSmp > nFea
ddata = data'*data;
ddata = max(ddata,ddata');
[eigvector_PCA, eigvalue_PCA] = eig(ddata);
eigvalue_PCA = diag(eigvalue_PCA);
clear ddata;
maxEigValue = max(abs(eigvalue_PCA));
eigIdx = find(eigvalue_PCA/maxEigValue < 1e-12);
eigvalue_PCA(eigIdx) = [];
eigvector_PCA(:,eigIdx) = [];
[junk, index] = sort(-eigvalue_PCA);
eigvalue_PCA = eigvalue_PCA(index);
eigvector_PCA = eigvector_PCA(:, index);
%=======================================
if options.PCARatio > 1
idx = options.PCARatio;
if idx < length(eigvalue_PCA)
eigvalue_PCA = eigvalue_PCA(1:idx);
eigvector_PCA = eigvector_PCA(:,1:idx);
end
elseif options.PCARatio < 1
sumEig = sum(eigvalue_PCA);
sumEig = sumEig*options.PCARatio;
sumNow = 0;
for idx = 1:length(eigvalue_PCA)
sumNow = sumNow + eigvalue_PCA(idx);
if sumNow >= sumEig
break;
end
end
eigvalue_PCA = eigvalue_PCA(1:idx);
eigvector_PCA = eigvector_PCA(:,1:idx);
end
%=======================================
eigvalue_PCA = eigvalue_PCA.^-.5;
data = (data*eigvector_PCA).*repmat(eigvalue_PCA',nSmp,1);
else
ddata = data*data';
ddata = max(ddata,ddata');
[eigvector, eigvalue_PCA] = eig(ddata);
eigvalue_PCA = diag(eigvalue_PCA);
clear ddata;
maxEigValue = max(eigvalue_PCA);
eigIdx = find(eigvalue_PCA/maxEigValue < 1e-12);
eigvalue_PCA(eigIdx) = [];
eigvector(:,eigIdx) = [];
[junk, index] = sort(-eigvalue_PCA);
eigvalue_PCA = eigvalue_PCA(index);
eigvector = eigvector(:, index);
%=======================================
if options.PCARatio > 1
idx = options.PCARatio;
if idx < length(eigvalue_PCA)
eigvalue_PCA = eigvalue_PCA(1:idx);
eigvector = eigvector(:,1:idx);
end
elseif options.PCARatio < 1
sumEig = sum(eigvalue_PCA);
sumEig = sumEig*options.PCARatio;
sumNow = 0;
for idx = 1:length(eigvalue_PCA)
sumNow = sumNow + eigvalue_PCA(idx);
if sumNow >= sumEig
break;