function [reg_min,G,reg_param] = gcv(U,s,b,method)
%GCV Plot the GCV function and find its minimum.
%
% [reg_min,G,reg_param] = gcv(U,s,b,method)
% [reg_min,G,reg_param] = gcv(U,sm,b,method) , sm = [sigma,mu]
%
% Plots the GCV-function
% || A*x - b ||^2
% G = -------------------
% (trace(I - A*A_I)^2
% as a function of the regularization parameter reg_param.
% Here, A_I is a matrix which produces the regularized solution.
%
% The following methods are allowed:
% method = 'Tikh' : Tikhonov regularization (solid line )
% method = 'tsvd' : truncated SVD or GSVD (o markers )
% method = 'dsvd' : damped SVD or GSVD (dotted line)
% If method is not specified, 'Tikh' is default.
%
% If any output arguments are specified, then the minimum of G is
% identified and the corresponding reg. parameter reg_min is returned.
% Per Christian Hansen, IMM, Dec. 16, 2003.
% Reference: G. Wahba, "Spline Models for Observational Data",
% SIAM, 1990.
% Set defaults.
if (nargin==3), method='Tikh'; end % Default method.
npoints = 200; % Number of points on the curve.
smin_ratio = 16*eps; % Smallest regularization parameter.
% Initialization.
[m,n] = size(U); [p,ps] = size(s);
beta = U'*b; beta2 = norm(b)^2 - norm(beta)^2;
if (ps==2)
s = s(p:-1:1,1)./s(p:-1:1,2); beta = beta(p:-1:1);
end
if (nargout > 0), find_min = 1; else find_min = 0; end
if (strncmp(method,'Tikh',4) | strncmp(method,'tikh',4))
% Vector of regularization parameters.
reg_param = zeros(npoints,1); G = reg_param; s2 = s.^2;
reg_param(npoints) = max([s(p),s(1)*smin_ratio]);
ratio = (s(1)/reg_param(npoints))^(1/(npoints-1));
for i=npoints-1:-1:1, reg_param(i) = ratio*reg_param(i+1); end
% Intrinsic residual.
delta0 = 0;
if (m > n & beta2 > 0), delta0 = beta2; end
% Vector of GCV-function values.
for i=1:npoints
G(i) = gcvfun(reg_param(i),s2,beta(1:p),delta0,m-n);
end
% Plot GCV function.
% loglog(reg_param,G,'-'), xlabel('\lambda'), ylabel('G(\lambda)')
% title('GCV function')
% Find minimum, if requested.
if (find_min)
[minG,minGi] = min(G); % Initial guess.
reg_min = fminbnd('gcvfun',...
reg_param(min(minGi+1,npoints)),reg_param(max(minGi-1,1)),...
optimset('Display','off'),s2,beta(1:p),delta0,m-n); % Minimizer.
minG = gcvfun(reg_min,s2,beta(1:p),delta0,m-n); % Minimum of GCV function.
% ax = axis;
% HoldState = ishold; hold on;
% loglog(reg_min,minG,'*r',[reg_min,reg_min],[minG/1000,minG],':r')
% title(['GCV function, minimum at \lambda = ',num2str(reg_min)])
% axis(ax)
% if (~HoldState), hold off; end
end
elseif (strncmp(method,'tsvd',4) | strncmp(method,'tgsv',4))
% Vector of GCV-function values.
rho2(p-1) = abs(beta(p))^2;
if (m > n & beta2 > 0), rho2(p-1) = rho2(p-1) + beta2; end
for k=p-2:-1:1, rho2(k) = rho2(k+1) + abs(beta(k+1))^2; end
G = zeros(p-1,1);
for k=1:p-1
G(k) = rho2(k)/(m - k + (n - p))^2;
end
reg_param = (1:p-1)';
% Plot GCV function.
% semilogy(reg_param,G,'o'), xlabel('k'), ylabel('G(k)')
% title('GCV function')
%
% Find minimum, if requested.
if (find_min)
[minG,reg_min] = min(G);
% ax = axis;
% HoldState = ishold; hold on;
% semilogy(reg_min,minG,'*r',[reg_min,reg_min],[minG/1000,minG],':r')
% title(['GCV function, minimum at k = ',num2str(reg_min)])
% axis(ax);
% if (~HoldState), hold off; end
end
elseif (strncmp(method,'dsvd',4) | strncmp(method,'dgsv',4))
% Vector of regularization parameters.
reg_param = zeros(npoints,1); G = reg_param;
reg_param(npoints) = max([s(p),s(1)*smin_ratio]);
ratio = (s(1)/reg_param(npoints))^(1/(npoints-1));
for i=npoints-1:-1:1, reg_param(i) = ratio*reg_param(i+1); end
% Intrinsic residual.
delta0 = 0;
if (m > n & beta2 > 0), delta0 = beta2; end
% Vector of GCV-function values.
for i=1:npoints
G(i) = gcvfun(reg_param(i),s,beta(1:p),delta0,m-n,1);
end
% % Plot GCV function.
% loglog(reg_param,G,':'), xlabel('\lambda'), ylabel('G(\lambda)')
% title('GCV function')
% Find minimum, if requested.
if (find_min)
[minG,minGi] = min(G); % Initial guess.
reg_min = fminbnd('gcvfun',...
reg_param(min(minGi+1,npoints)),reg_param(max(minGi-1,1)),...
optimset('Display','off'),s,beta(1:p),delta0,m-n,1); % Minimizer.
minG = gcvfun(reg_min,s,beta(1:p),delta0,m-n,1); % Minimum of GCV function.
% ax = axis;
% HoldState = ishold; hold on;
% loglog(reg_min,minG,'*r',[reg_min,reg_min],[minG/1000,minG],':r')
% title(['GCV function, minimum at \lambda = ',num2str(reg_min)])
% axis(ax)
% if (~HoldState), hold off; end
end
elseif (strncmp(method,'mtsv',4) | strncmp(method,'ttls',4))
error('The MTSVD and TTLS methods are not supported')
else
error('Illegal method')
end
评论3