%%%%%%%%%%%%%%%%%%% DETECTION AND ESTIMATION THEORY %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% SANA SYED %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%% FIGURE 3.5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% CHAPTER 03 DETECTION THEORY %%%%%%%%%%%%%%%%%%%%%%%%%%%
clc
clear all
close all;
A=1;
N=10;
P_FA=[10^-1 10^-2 10^-3 10^-4 10^-5 10^-6 10^-7]
ENRS=0:0.2:20;
Pd = zeros(length(P_FA),length(ENRS));
for i=1:length(P_FA)
y=erfinv(P_FA(i));
sqrt_ENR = sqrt(10.^(ENRS./10));
x = y-sqrt_ENR;
Pd(i,:)=0.5*erfc(x/sqrt(2));
end
figure;
plot(ENRS,Pd,'LineWidth',2);
grid on;
ylabel('Probability of detection, P_D','FontWeight','bold');xlabel('Energy-to-noise-ratio (dB) 10log_1_0NA^2/\sigma^2','FontWeight','bold');
title('Detection performance for DC level in WGN PD vs ENR','FontWeight','bold');
legend('10^-1' ,'10^-2' ,'10^-3' ,'10^-4 ','10^-5' ,'10^-6' ,'10^-7')
没有合适的资源?快使用搜索试试~ 我知道了~
fig3_5.rar_NOISE_SNR estimator_sample mean
共1个文件
m:1个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 25 浏览量
2022-09-21
17:55:47
上传
评论
收藏 568B RAR 举报
温馨提示
when SNR is high , 1st sample estimator provides good estimate of A. it has no noise effect . so we don’t need averaging effect to reduce noise when SNR is high. However variance is still low in sample mean estimator which shows that in reality ,sample mean is good estimator than 1st sample estimator. So, for high SNR, we do not need to reduce the effect of noise by averaging. or we can say that for high SNR let say >1000 , 1st sample estimator got reduced noise. But as for as variance is concerned , the sample mean has low variance for high SNR as well.
资源推荐
资源详情
资源评论
收起资源包目录
fig3_5.rar (1个子文件)
fig3_5.m 953B
共 1 条
- 1
资源评论
局外狗
- 粉丝: 80
- 资源: 1万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- GEE错误集-Cannot add an object of type <Element> to the map. Might be fixable with an explicit .pdf
- 矩阵与线程的对应关系图
- 人体人员检测46-YOLO(v5至v9)、COCO、Darknet、TFRecord数据集合集.rar
- GEMM优化代码实现1
- 资料阅读器(先下载解压) 5.0.zip
- 人、垃圾、非垃圾检测18-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- java实现的冒泡排序 含代码说明和示例.docx
- 440379878861684smart-parking.zip
- 金智维RPA server安装包
- 二维码图形检测6-YOLO(v5至v9)、COCO、CreateML、Darknet、Paligemma、TFRecord数据集合集.rar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功