/*
* Copyright (C) 2015 Prevas A/S
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/spi/spi.h>
#include <linux/regulator/consumer.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#define ADS8688_CMD_REG(x) (x << 8)
#define ADS8688_CMD_REG_NOOP 0x00
#define ADS8688_CMD_REG_RST 0x85
#define ADS8688_CMD_REG_MAN_CH(chan) (0xC0 | (4 * chan))
#define ADS8688_CMD_DONT_CARE_BITS 16
#define ADS8688_PROG_REG(x) (x << 9)
#define ADS8688_PROG_REG_RANGE_CH(chan) (0x05 + chan)
#define ADS8688_PROG_WR_BIT BIT(8)
#define ADS8688_PROG_DONT_CARE_BITS 8
#define ADS8688_REG_PLUSMINUS25VREF 0
#define ADS8688_REG_PLUSMINUS125VREF 1
#define ADS8688_REG_PLUSMINUS0625VREF 2
#define ADS8688_REG_PLUS25VREF 5
#define ADS8688_REG_PLUS125VREF 6
#define ADS8688_VREF_MV 4096
#define ADS8688_REALBITS 16
/*
* enum ads8688_range - ADS8688 reference voltage range
* @ADS8688_PLUSMINUS25VREF: Device is configured for input range ±2.5 * VREF
* @ADS8688_PLUSMINUS125VREF: Device is configured for input range ±1.25 * VREF
* @ADS8688_PLUSMINUS0625VREF: Device is configured for input range ±0.625 * VREF
* @ADS8688_PLUS25VREF: Device is configured for input range 0 - 2.5 * VREF
* @ADS8688_PLUS125VREF: Device is configured for input range 0 - 1.25 * VREF
*/
enum ads8688_range {
ADS8688_PLUSMINUS25VREF,
ADS8688_PLUSMINUS125VREF,
ADS8688_PLUSMINUS0625VREF,
ADS8688_PLUS25VREF,
ADS8688_PLUS125VREF,
};
struct ads8688_chip_info {
const struct iio_chan_spec *channels;
unsigned int num_channels;
};
struct ads8688_state {
struct mutex lock;
const struct ads8688_chip_info *chip_info;
struct spi_device *spi;
struct regulator *reg;
unsigned int vref_mv;
enum ads8688_range range[8];
union {
__be32 d32;
u8 d8[4];
} data[2] ____cacheline_aligned;
};
enum ads8688_id {
ID_ADS8684,
ID_ADS8688,
};
struct ads8688_ranges {
enum ads8688_range range;
unsigned int scale;
int offset;
u8 reg;
};
static const struct ads8688_ranges ads8688_range_def[5] = {
{
.range = ADS8688_PLUSMINUS25VREF,
.scale = 76295,
.offset = -(1 << (ADS8688_REALBITS - 1)),
.reg = ADS8688_REG_PLUSMINUS25VREF,
}, {
.range = ADS8688_PLUSMINUS125VREF,
.scale = 38148,
.offset = -(1 << (ADS8688_REALBITS - 1)),
.reg = ADS8688_REG_PLUSMINUS125VREF,
}, {
.range = ADS8688_PLUSMINUS0625VREF,
.scale = 19074,
.offset = -(1 << (ADS8688_REALBITS - 1)),
.reg = ADS8688_REG_PLUSMINUS0625VREF,
}, {
.range = ADS8688_PLUS25VREF,
.scale = 38148,
.offset = 0,
.reg = ADS8688_REG_PLUS25VREF,
}, {
.range = ADS8688_PLUS125VREF,
.scale = 19074,
.offset = 0,
.reg = ADS8688_REG_PLUS125VREF,
}
};
static ssize_t ads8688_show_scales(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ads8688_state *st = iio_priv(dev_to_iio_dev(dev));
return sprintf(buf, "0.%09u 0.%09u 0.%09u\n",
ads8688_range_def[0].scale * st->vref_mv,
ads8688_range_def[1].scale * st->vref_mv,
ads8688_range_def[2].scale * st->vref_mv);
}
static ssize_t ads8688_show_offsets(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%d %d\n", ads8688_range_def[0].offset,
ads8688_range_def[3].offset);
}
static IIO_DEVICE_ATTR(in_voltage_scale_available, S_IRUGO,
ads8688_show_scales, NULL, 0);
static IIO_DEVICE_ATTR(in_voltage_offset_available, S_IRUGO,
ads8688_show_offsets, NULL, 0);
static struct attribute *ads8688_attributes[] = {
&iio_dev_attr_in_voltage_scale_available.dev_attr.attr,
&iio_dev_attr_in_voltage_offset_available.dev_attr.attr,
NULL,
};
static const struct attribute_group ads8688_attribute_group = {
.attrs = ads8688_attributes,
};
#define ADS8688_CHAN(index) \
{ \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.channel = index, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) \
| BIT(IIO_CHAN_INFO_SCALE) \
| BIT(IIO_CHAN_INFO_OFFSET), \
}
static const struct iio_chan_spec ads8684_channels[] = {
ADS8688_CHAN(0),
ADS8688_CHAN(1),
ADS8688_CHAN(2),
ADS8688_CHAN(3),
};
static const struct iio_chan_spec ads8688_channels[] = {
ADS8688_CHAN(0),
ADS8688_CHAN(1),
ADS8688_CHAN(2),
ADS8688_CHAN(3),
ADS8688_CHAN(4),
ADS8688_CHAN(5),
ADS8688_CHAN(6),
ADS8688_CHAN(7),
};
static int ads8688_prog_write(struct iio_dev *indio_dev, unsigned int addr,
unsigned int val)
{
struct ads8688_state *st = iio_priv(indio_dev);
u32 tmp;
tmp = ADS8688_PROG_REG(addr) | ADS8688_PROG_WR_BIT | val;
tmp <<= ADS8688_PROG_DONT_CARE_BITS;
st->data[0].d32 = cpu_to_be32(tmp);
return spi_write(st->spi, &st->data[0].d8[1], 3);
}
static int ads8688_reset(struct iio_dev *indio_dev)
{
struct ads8688_state *st = iio_priv(indio_dev);
u32 tmp;
tmp = ADS8688_CMD_REG(ADS8688_CMD_REG_RST);
tmp <<= ADS8688_CMD_DONT_CARE_BITS;
st->data[0].d32 = cpu_to_be32(tmp);
return spi_write(st->spi, &st->data[0].d8[0], 4);
}
static int ads8688_read(struct iio_dev *indio_dev, unsigned int chan)
{
struct ads8688_state *st = iio_priv(indio_dev);
int ret;
u32 tmp;
struct spi_transfer t[] = {
{
.tx_buf = &st->data[0].d8[0],
.len = 4,
.cs_change = 1,
}, {
.tx_buf = &st->data[1].d8[0],
.rx_buf = &st->data[1].d8[0],
.len = 4,
},
};
tmp = ADS8688_CMD_REG(ADS8688_CMD_REG_MAN_CH(chan));
tmp <<= ADS8688_CMD_DONT_CARE_BITS;
st->data[0].d32 = cpu_to_be32(tmp);
tmp = ADS8688_CMD_REG(ADS8688_CMD_REG_NOOP);
tmp <<= ADS8688_CMD_DONT_CARE_BITS;
st->data[1].d32 = cpu_to_be32(tmp);
ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
if (ret < 0)
return ret;
return be32_to_cpu(st->data[1].d32) & 0xffff;
}
static int ads8688_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long m)
{
int ret, offset;
unsigned long scale_mv;
struct ads8688_state *st = iio_priv(indio_dev);
mutex_lock(&st->lock);
switch (m) {
case IIO_CHAN_INFO_RAW:
ret = ads8688_read(indio_dev, chan->channel);
mutex_unlock(&st->lock);
if (ret < 0)
return ret;
*val = ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
scale_mv = st->vref_mv;
scale_mv *= ads8688_range_def[st->range[chan->channel]].scale;
*val = 0;
*val2 = scale_mv;
mutex_unlock(&st->lock);
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_OFFSET:
offset = ads8688_range_def[st->range[chan->channel]].offset;
*val = offset;
mutex_unlock(&st->lock);
return IIO_VAL_INT;
}
mutex_unlock(&st->lock);
return -EINVAL;
}
static int ads8688_write_reg_range(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
enum ads8688_range range)
{
unsigned int tmp;
int ret;
tmp = ADS8688_PROG_REG_RANGE_CH(chan->channel);
ret = ads8688_prog_write(indio_dev, tmp, range);
return ret;
}
static int ads8688_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct ads8688_state *st = iio_priv(indio_dev);
unsigned int scale = 0;
int ret = -EINVAL, i, offset = 0;
mutex_lock(&st->lock);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
/* If the offset is 0 the ±2.5 * VREF mode is not available */
offset = ads8688_range_def[st->range[chan->channel]].offset;
if (offset == 0 && val2 == ads8688_range_def[0].scale * st->vref_mv) {
mutex_unlock(&st->lock);
return -EINVAL;
}
/* Lookup new mode */
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
ADS8688 带 5V 单电源并支持双极输入的 16 位、8 通道、500Ksps ADC 具有集成模拟前端的 16 位 ADC 支持自动和手动两种扫描模式的 4 通道和 8 通道多路复用器 (MUX) 独立于通道的可编程输入范围: 双极:±10.24V、±5.12V 和 ±2.56V 单极:0V 到 10.24V 和 0V 到 5.12V 5V 模拟电源:1.65V 到 5V I/O 电源 恒定的阻性输入阻抗:1MΩ 输入过压保护:高达 ±20V 低漂移的片上 4.096V 基准电压 出色的性能:
资源详情
资源评论
资源推荐
收起资源包目录
ads8688.rar (1个子文件)
ads8688.c 12KB
共 1 条
- 1
局外狗
- 粉丝: 80
- 资源: 1万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论1