%% Face Detection and Tracking Using the KLT Algorithm
% This example shows how to automatically detect and track a face using
% feature points. The approach in this example keeps track of the face even
% when the person tilts his or her head, or moves toward or away from the
% camera.
%
% Copyright 2013 The MathWorks, Inc.
%% Detect a Face
% Create a cascade detector object.
faceDetector = vision.CascadeObjectDetector();
% Open a video file
videoFileReader = vision.VideoFileReader('tilted_face.avi');
% Read a video frame and run the face detector.
videoFrame = step(videoFileReader);
bbox = step(faceDetector, videoFrame);
% Convert the box to a polygon. This is needed to be able to visualize the
% rotation of the object.
x = bbox(1); y = bbox(2); w = bbox(3); h = bbox(4);
bboxPolygon = [x, y, x+w, y, x+w, y+h, x, y+h];
% Draw the returned bounding box around the detected face.
shapeInserter = vision.ShapeInserter('Shape', 'Polygons', 'BorderColor','Custom',...
'CustomBorderColor',[255 255 0]);
videoFrame = step(shapeInserter, videoFrame, bboxPolygon);
figure; imshow(videoFrame); title('Detected face');
%% Identify Facial Features To Track
% Crop out the region of the image containing the face, and detect the
% feature points inside it.
cornerDetector = vision.CornerDetector('Method', ...
'Minimum eigenvalue (Shi & Tomasi)');
points = step(cornerDetector, rgb2gray(imcrop(videoFrame, bbox)));
% The coordinates of the feature points are with respect to the cropped
% region. They need to be translated back into the original image
% coordinate system.
points = double(points);
points(:, 1) = points(:, 1) + double(bbox(1));
points(:, 2) = points(:, 2) + double(bbox(2));
% Display the detected points.
markerInserter = vision.MarkerInserter('Shape', 'Plus', ...
'BorderColor', 'White');
videoFrame = step(markerInserter, videoFrame, points);
figure, imshow(videoFrame), title('Detected features');
%% Initialize a Tracker to Track the Points
% Create a point tracker and enable the bidirectional error constraint to
% make it more robust in the presence of noise and clutter.
pointTracker = vision.PointTracker('MaxBidirectionalError', 2);
% Initialize the tracker with the initial point locations and the initial
% video frame.
initialize(pointTracker, double(points), rgb2gray(videoFrame));
%% Initialize a Video Player to Display the Results
% Create a video player object for displaying video frames.
videoInfo = info(videoFileReader);
videoPlayer = vision.VideoPlayer('Position',...
[100 100 videoInfo.VideoSize(1:2)+30]);
%% Initialize a Geometric Transform Estimator
geometricTransformEstimator = vision.GeometricTransformEstimator(...
'PixelDistanceThreshold', 4, 'Transform', 'Nonreflective similarity');
% Make a copy of the points to be used for computing the geometric
% transformation between the points in the previous and the current frames
oldPoints = double(points);
%% Track the Points
while ~isDone(videoFileReader)
% get the next frame
videoFrame = step(videoFileReader);
% Track the points. Note that some points may be lost.
[points, isFound] = step(pointTracker, rgb2gray(videoFrame));
visiblePoints = points(isFound, :);
oldInliers = oldPoints(isFound, :);
if ~isempty(visiblePoints)
% Estimate the geometric transformation between the old points
% and the new points.
[xform, geometricInlierIdx] = step(geometricTransformEstimator, ...
double(oldInliers), double(visiblePoints));
% Eliminate outliers
visiblePoints = visiblePoints(geometricInlierIdx, :);
oldInliers = oldInliers(geometricInlierIdx, :);
% Apply the transformation to the bounding box
boxPoints = [reshape(bboxPolygon, 2, 4)', ones(4, 1)];
boxPoints = boxPoints * xform;
bboxPolygon = reshape(boxPoints', 1, numel(boxPoints));
% Insert a bounding box around the object being tracked
videoFrame = step(shapeInserter, videoFrame, bboxPolygon);
% Display tracked points
videoFrame = step(markerInserter, videoFrame, visiblePoints);
% Reset the points
oldPoints = visiblePoints;
setPoints(pointTracker, oldPoints);
end
% Display the annotated video frame using the video player object
step(videoPlayer, videoFrame);
end
%% Clean up
release(videoFileReader);
release(videoPlayer);
release(geometricTransformEstimator);
release(pointTracker);
close all
alvarocfc
- 粉丝: 134
- 资源: 1万+
最新资源
- 雷利衰落模拟器Matlab代码.rar
- 零强制均衡用于STBC-MIMO系统Matlab实现.rar
- 雷利信道中采用交织的硬解码误码率Matlab代码.rar
- 零强制均衡用于STBC-MIMO系统Matlab代码.rar
- 模拟 Hdb3 基带调制的Matlab程序.rar
- 脉冲编码调制Matlab代码.rar
- 蒙特卡洛模拟并估计Alamouti方案在雷利信道上的误码率matlab.rar
- 模拟QPSK调制方案的符号误码率matlab实现.rar
- 模拟不同类型的调制、编码和交织的误码率(BER)与Eb_No(db)的关系Matlab代码1.rar
- 模拟OFDM的峰值平均功率比的累积分布函数Matlab代码.rar
- 模拟了在单通道中传输和接收BPSK调制信号的模型Matlab代码.rar
- 模拟瑞利信道中的 BPSK 传输和接收的简单 Matlab 示例.rar
- 模拟瑞利信道中的 QPSK 或 4-QAM 调制方案Matlab代码.rar
- 频率选择性瑞利衰落信道中的 OFDM BER 与 SNR Matlab代码.rar
- 能够通过不同的模拟来评估(MIMO)-(多用户)-OFDM 系统的性能.rar
- 能够生成802.11ad控制、SC和OFDM PHY波形Matlabdiamond.rar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈