例1 采用动量梯度下降算法训练 BP 网络。
训练样本定义如下:
输入矢量为
p =[-1 -2 3 1
-1 1 5 -3]
目标矢量为 t = [-1 -1 1 1]
解:本例的 MATLAB 程序如下:
close all
clear
echo on
clc
% NEWFF——生成一个新的前向神经网络
% TRAIN——对 BP 神经网络进行训练
% SIM——对 BP 神经网络进行仿真
pause
% 敲任意键开始
clc
% 定义训练样本
% P 为输入矢量
P=[-1, -2, 3, 1; -1, 1, 5, -3];
% T 为目标矢量
T=[-1, -1, 1, 1];
pause;
clc
% 创建一个新的前向神经网络
net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')
% 当前输入层权值和阈值
inputWeights=net.IW{1,1}
inputbias=net.b{1}
% 当前网络层权值和阈值
layerWeights=net.LW{2,1}
layerbias=net.b{2}
pause
clc
% 设置训练参数
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net.trainParam.epochs = 1000;
net.trainParam.goal = 1e-3;
pause
clc
% 调用 TRAINGDM 算法训练 BP 网络
[net,tr]=train(net,P,T);
pause
clc
% 对 BP 网络进行仿真
A = sim(net,P)
% 计算仿真误差
E = T - A
MSE=mse(E)
pause
clc
echo off
例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。其中,样本数据可以采用如下MATLAB 语句生成:
输入矢量:P = [-1:0.05:1];
目标矢量:randn(’seed’,78341223);
T = sin(2*pi*P)+0.1*randn(size(P));
解:本例的 MATLAB 程序如下:
close all
clear
echo on
clc
% NEWFF——生成一个新的前向神经网络
% TRAIN——对 BP 神经网络进行训练
% SIM——对 BP 神经网络进行仿真
pause
% 敲任意键开始
clc
% 定义训练样本矢量
% P 为输入矢量
P = [-1:0.05:1];
% T 为目标矢量
randn('seed',78341223); T = sin(2*pi*P)+0.1*randn(size(P));
% 绘制样本数据点
plot(P,T,'+');
echo off
hold on;
plot(P,sin(2*pi*P),':');
% 绘制不含噪声的正弦曲线
echo on
clc
pause
clc
% 创建一个新的前向神经网络
net=newff(minmax(P),[20,1],{'tansig','purelin'});
pause
clc
echo off
clc
disp('1. L-M 优化算法 TRAINLM'); disp('2. 贝叶斯正则化算法 TRAINBR');
choice=input('请选择训练算法(1,2):');
figure(gcf);
if(choice==1)
echo on
clc
% 采用 L-M 优化算法 TRAINLM
net.trainFcn='trainlm';
pause
clc
% 设置训练参数
net.trainParam.epochs = 500;
net.trainParam.goal = 1e-6;
net=init(net);
% 重新初始化
pause
clc
elseif(choice==2)
echo on
clc
% 采用贝叶斯正则化算法 TRAINBR
net.trainFcn='trainbr';
pause
clc
% 设置训练参数
net.trainParam.epochs = 500;
randn('seed',192736547);
net = init(net);
% 重新初始化
pause
clc
end
% 调用相应算法训练 BP 网络
[net,tr]=train(net,P,T);
pause
clc
% 对 BP 网络进行仿真
A = sim(net,P);
% 计算仿真误差
E = T - A;
MSE=mse(E)
pause
clc
% 绘制匹配结果曲线
close all;
plot(P,A,P,T,'+',P,sin(2*pi*P),':');
pause;
clc
echo off
通过采用两种不同的训练算法,我们可以得到如图 1和图 2所示的两种拟合结果。图中的实线表示拟合曲线,虚线代表不含白噪声的正弦曲线,“+”点为含有白噪声的正弦样本数据点。显然,经 trainlm 函数训练后的神经网络对样本数据点实现了“过度匹配”,而经 trainbr 函数训练的神经网络对噪声不敏感,具有较好的推广能力。
值得指出的是,在利用 trainbr 函数训练 BP 网络时,若训练结果收敛,通常会给出提示信息“Maximum MU reached”。此外,用户还可以根据 SSE 和 SSW 的大小变化情况来判断训练是否收敛:当 SSE 和 SSW 的值在经过若干步迭代后处于恒值时,则通常说明网络训练收敛,此时可以停止训练。观察trainbr 函数训练 BP 网络的误差变化曲线,可见,当训练迭代至 320 步时,网络训练收敛,此时 SSE 和 SSW 均为恒值,当前有效网络的参数(有效权值和阈值)个数为 11.7973。
例3 采用“提前停止”方法提高 BP 网络的推广能力。对于和例 2相同的问题,在本例中我们将采用训练函数 traingdx 和“提前停止”相结合的方法来训练 BP 网络,以提高 BP 网络的推广能力。
解:在利用“提前停止”方法时,首先应分别定义训练样本、验证样本或测试样本,其中,验证样本是必不可少的。在本例中,我们只定义并使用验证样本,即有
验证样本输入矢量:val.P = [-0.975:.05:0.975]
验证样本目标矢量:val.T = sin(2*pi*val.P)+0.1*randn(size(val.P))
值得注意的是,尽管“提前停止”方法可以和任何一种 BP 网络训练函数一起使用,但是不适合同训练速度过快的算法联合使用,比如 trainlm 函数,所以本例中我们采用训练速度相对较慢的变学习速率算法 traingdx 函数作为训练函数。
本例的 MATLAB 程序如下:
close all
clear
echo on
clc
% NEWFF——生成一个新的前向神经网络
% TRAIN——对 BP 神经网络进行训练
% SIM——对 BP 神经网络进行仿真
pause
% 敲任意键开始
clc
% 定义训练样本矢量
% P 为输入矢量
P = [-1:0.05:1];
% T 为目标矢量
randn('seed',78341223);
T = sin(2*pi*P)+0.1*randn(size(P));
% 绘制训练样本数据点
plot(P,T,'+');
echo off
hold on;
plot(P,sin(2*pi*P),':'); % 绘制不含噪声的正弦曲线
echo on
clc
pause
clc
% 定义验证样本
val.P = [-0.975:0.05:0.975]; % 验证样本的输入矢量
val.T = sin(2*pi*val.P)+0.1*randn(size(val.P)); % 验证样本的目标矢量
pause
clc
% 创建一个新的前向神经网络
net=newff(minmax(P),[5,1],{'tansig','purelin'},'traingdx');
pause
clc
% 设置训练参数
net.trainParam.epochs = 500;
net = init(net);
pause
clc
% 训练 BP 网络
[net,tr]=train(net,P,T,[],[],val);
pause
clc
% 对 BP 网络进行仿真
A = sim(net,P);
% 计算仿真误差
E = T - A;
MSE=mse(E)
pause
clc
% 绘制仿真拟合结果曲线
close all;
plot(P,A,P,T,'+',P,sin(2*pi*P),':');
pause;
clc
echo off
下面给出了网络的某次训练结果,可见,当训练至第 136 步时,训练提前停止,此时的网络误差为 0.0102565。给出了训练后的仿真数据拟合曲线,效果是相当满意的。
[net,tr]=train(net,P,T,[],[],val);
TRAINGDX, Epoch 0/500, MSE 0.504647/0, Gradient 2.1201/1e-006
TRAINGDX, Epoch 25/500, MSE 0.163593/0, Gradient 0.384793/1e-006
TRAINGDX, Epoch 50/500, MSE 0.130259/0, Gradient 0.158209/1e-006
TRAINGDX, Epoch 75/500, MSE 0.086869/0, Gradient 0.0883479/1e-006
TRAINGDX, Epoch 100/500, MSE 0.0492511/0, Gradient 0.0387894/1e-006
TRAINGDX, Epoch 125/500, MSE 0.0110016/0, Gradient 0.017242/1e-006
TRAINGDX, Epoch 136/500, MSE 0.0102565/0, Gradient 0.01203/1e-006
TR