/*
Copyright (c) 2008, Luke Benstead.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file mat4.c
*/
#include <memory.h>
#include <assert.h>
#include <stdlib.h>
#include "kazmath/utility.h"
#include "kazmath/vec3.h"
#include "kazmath/mat4.h"
#include "kazmath/mat3.h"
#include "kazmath/quaternion.h"
#include "kazmath/plane.h"
#include "kazmath/neon_matrix_impl.h"
/**
* Fills a kmMat4 structure with the values from a 16
* element array of floats
* @Params pOut - A pointer to the destination matrix
* pMat - A 16 element array of floats
* @Return Returns pOut so that the call can be nested
*/
kmMat4* const kmMat4Fill(kmMat4* pOut, const kmScalar* pMat)
{
memcpy(pOut->mat, pMat, sizeof(kmScalar) * 16);
return pOut;
}
/**
* Sets pOut to an identity matrix returns pOut
* @Params pOut - A pointer to the matrix to set to identity
* @Return Returns pOut so that the call can be nested
*/
kmMat4* const kmMat4Identity(kmMat4* pOut)
{
memset(pOut->mat, 0, sizeof(float) * 16);
pOut->mat[0] = pOut->mat[5] = pOut->mat[10] = pOut->mat[15] = 1.0f;
return pOut;
}
float get(const kmMat4 * pIn, int row, int col)
{
return pIn->mat[row + 4*col];
}
void set(kmMat4 * pIn, int row, int col, float value)
{
pIn->mat[row + 4*col] = value;
}
void swap(kmMat4 * pIn, int r1, int c1, int r2, int c2)
{
float tmp = get(pIn,r1,c1);
set(pIn,r1,c1,get(pIn,r2,c2));
set(pIn,r2,c2, tmp);
}
//Returns an upper and a lower triangular matrix which are L and R in the Gauss algorithm
int gaussj(kmMat4 *a, kmMat4 *b)
{
int i, icol = 0, irow = 0, j, k, l, ll, n = 4, m = 4;
float big, dum, pivinv;
int indxc[4] = {0};
int indxr[4] = {0};
int ipiv[4] = {0};
for (j = 0; j < n; j++) {
ipiv[j] = 0;
}
for (i = 0; i < n; i++) {
big = 0.0f;
for (j = 0; j < n; j++) {
if (ipiv[j] != 1) {
for (k = 0; k < n; k++) {
if (ipiv[k] == 0) {
if (abs(get(a,j, k)) >= big) {
big = abs(get(a,j, k));
irow = j;
icol = k;
}
}
}
}
}
++(ipiv[icol]);
if (irow != icol) {
for (l = 0; l < n; l++) {
swap(a,irow, l, icol, l);
}
for (l = 0; l < m; l++) {
swap(b,irow, l, icol, l);
}
}
indxr[i] = irow;
indxc[i] = icol;
if (get(a,icol, icol) == 0.0) {
return KM_FALSE;
}
pivinv = 1.0f / get(a,icol, icol);
set(a,icol, icol, 1.0f);
for (l = 0; l < n; l++) {
set(a,icol, l, get(a,icol, l) * pivinv);
}
for (l = 0; l < m; l++) {
set(b,icol, l, get(b,icol, l) * pivinv);
}
for (ll = 0; ll < n; ll++) {
if (ll != icol) {
dum = get(a,ll, icol);
set(a,ll, icol, 0.0f);
for (l = 0; l < n; l++) {
set(a,ll, l, get(a,ll, l) - get(a,icol, l) * dum);
}
for (l = 0; l < m; l++) {
set(b,ll, l, get(a,ll, l) - get(b,icol, l) * dum);
}
}
}
}
// This is the end of the main loop over columns of the reduction. It only remains to unscram-
// ble the solution in view of the column interchanges. We do this by interchanging pairs of
// columns in the reverse order that the permutation was built up.
for (l = n - 1; l >= 0; l--) {
if (indxr[l] != indxc[l]) {
for (k = 0; k < n; k++) {
swap(a,k, indxr[l], k, indxc[l]);
}
}
}
return KM_TRUE;
}
/**
* Calculates the inverse of pM and stores the result in
* pOut.
* @Return Returns NULL if there is no inverse, else pOut
*/
kmMat4* const kmMat4Inverse(kmMat4* pOut, const kmMat4* pM)
{
kmMat4 inv;
kmMat4 tmp;
kmMat4Assign(&inv, pM);
kmMat4Identity(&tmp);
if(gaussj(&inv, &tmp) == KM_FALSE) {
return NULL;
}
kmMat4Assign(pOut, &inv);
return pOut;
}
/**
* Returns KM_TRUE if pIn is an identity matrix
* KM_FALSE otherwise
*/
const int kmMat4IsIdentity(const kmMat4* pIn)
{
static const float identity [] = { 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
};
return (memcmp(identity, pIn->mat, sizeof(float) * 16) == 0);
}
/**
* Sets pOut to the transpose of pIn, returns pOut
*/
kmMat4* const kmMat4Transpose(kmMat4* pOut, const kmMat4* pIn)
{
int x, z;
for (z = 0; z < 4; ++z) {
for (x = 0; x < 4; ++x) {
pOut->mat[(z * 4) + x] = pIn->mat[(x * 4) + z];
}
}
return pOut;
}
/**
* Multiplies pM1 with pM2, stores the result in pOut, returns pOut
*/
kmMat4* const kmMat4Multiply(kmMat4* pOut, const kmMat4* pM1, const kmMat4* pM2)
{
#if defined(__ARM_NEON__)
float mat[16];
// Invert column-order with row-order
NEON_Matrix4Mul( &pM2->mat[0], &pM1->mat[0], &mat[0] );
#else
float mat[16];
const float *m1 = pM1->mat, *m2 = pM2->mat;
mat[0] = m1[0] * m2[0] + m1[4] * m2[1] + m1[8] * m2[2] + m1[12] * m2[3];
mat[1] = m1[1] * m2[0] + m1[5] * m2[1] + m1[9] * m2[2] + m1[13] * m2[3];
mat[2] = m1[2] * m2[0] + m1[6] * m2[1] + m1[10] * m2[2] + m1[14] * m2[3];
mat[3] = m1[3] * m2[0] + m1[7] * m2[1] + m1[11] * m2[2] + m1[15] * m2[3];
mat[4] = m1[0] * m2[4] + m1[4] * m2[5] + m1[8] * m2[6] + m1[12] * m2[7];
mat[5] = m1[1] * m2[4] + m1[5] * m2[5] + m1[9] * m2[6] + m1[13] * m2[7];
mat[6] = m1[2] * m2[4] + m1[6] * m2[5] + m1[10] * m2[6] + m1[14] * m2[7];
mat[7] = m1[3] * m2[4] + m1[7] * m2[5] + m1[11] * m2[6] + m1[15] * m2[7];
mat[8] = m1[0] * m2[8] + m1[4] * m2[9] + m1[8] * m2[10] + m1[12] * m2[11];
mat[9] = m1[1] * m2[8] + m1[5] * m2[9] + m1[9] * m2[10] + m1[13] * m2[11];
mat[10] = m1[2] * m2[8] + m1[6] * m2[9] + m1[10] * m2[10] + m1[14] * m2[11];
mat[11] = m1[3] * m2[8] + m1[7] * m2[9] + m1[11] * m2[10] + m1[15] * m2[11];
mat[12] = m1[0] * m2[12] + m1[4] * m2[13] + m1[8] * m2[14] + m1[12] * m2[15];
mat[13] = m1[1] * m2[12] + m1[5] * m2[13] + m1[9] * m2[14] + m1[13] * m2[15];
mat[14] = m1[2] * m2[12] + m1[6] * m2[13] + m1[10] * m2[14] + m1[14] * m2[15];
mat[15] = m1[3] * m2[12] + m1[7] * m2[13] + m1[11] * m2[14] + m1[15] * m2[15];
#endif
memcpy(pOut->mat, mat, sizeof(float)*16);
return pOut;
}
/**
* Assigns
邓凌佳
- 粉丝: 82
- 资源: 1万+
最新资源
- 自研DSP28335+移相全桥+纯程序实现同步整流 目前在DSP固有损耗2W的情况下,输出120W效率接近94% 就是铝基板+平面变压器玩起来太贵,不好做小批量,335现在也很贵 基于035的低
- 黏菌优化算法优化用于分类 回归 时序预测 黏菌优化支持向量机SVM,最小二乘支持向量机LSSVM,随机森林RF,极限学习机ELM,核极限学习机KELM,深度极限学习机DELM,BP神经网络,长短时记忆
- 灰狼优化算法优化用于分类 回归 时序预测 灰狼优化支持向量机SVM,最小二乘支持向量机LSSVM,随机森林RF,极限学习机ELM,核极限学习机KELM,深度极限学习机DELM,BP神经网络,长短时记忆
- 麻雀搜索算法优化用于分类 回归 时序预测 麻雀优化支持向量机SVM,最小二乘支持向量机LSSVM,随机森林RF,极限学习机ELM,核极限学习机KELM,深度极限学习机DELM,BP神经网络,长短时记忆
- 模型开发域控制Simulik自动生成代码 DSP2833x基于模型的电机控制设计 MATLAb Simulik自动生成代码 基于dsp2833x 底层驱动库的自动代码生成 MATLAB Simu
- 随机配置网络模型SCN做多输入单输出的拟合预测建模 程序内注释详细直接替数据就可以使用 程序语言为matlab 程序直接运行可以出拟合预测图,迭代优化图,线性拟合预测图,多个预测评价指标 P
- comsol中相场方法模拟多孔介质中驱替的计算案例 提供采用相场方法模拟多孔介质中驱替的算例,可在此基础上学会多孔介质中的驱替模拟,得到水驱油(或其他两相)后多孔介质中的残余油分布,计算采出程度随时间
- 该模型为内置式PMSM的电压反馈弱磁法,转速环输出给定转矩,输出转矩经牛顿迭代数值求的MTPA的最优dq电流,当电压超过直流母线电压时,构建电压闭环输出负的d轴电流进行弱磁扩速
- MATLAB应用数字散斑相关方法计算位移应变p文件资料包(参数可调) 专业性和针对性强
- 光伏控制器,mppt光伏最大功率点跟踪扰动观察法变步长扰动观察法仿真模型
- 基于fpga的半带滤波器仿真程序 1.软件:vivado 2.语言:Verilog 3.具体流程:包括ip核实现版本与非ip核实现版本,包含信号发生,合成,半带滤波器,抽取变频,fifo,fft流程
- 多目标 灰狼算法 多目标 冷热电微网 低碳调度 MATLAB代码:基于多目标灰狼算法的冷热电综合三联供微网低碳经济调度 参考文档:《基于改进多目标灰狼算法的冷热电联供型微电网运行优化-戚艳》灰狼算法
- 电动汽车控制器,纯电动汽车仿真、纯电动公交、纯电动客车、纯电动汽车动力性仿真、经济性仿真、续航里程仿真 模型包括电机、电池、车辆模型 有两种模型2选1: 1 完全用matlab simulink搭
- No.3 纵向速度控制-MPC控制(Carsim2019,Matlab2018a) 特殊说明:如需要电车版本的请咨询 采用上层控制器和下层控制器 目标为控制车辆的纵向速度,使其跟踪上期望纵向速度曲线
- HEV并联(IPS) 车辆仿真 simulink stateflow搭建 模型包含工况路普输入,驾驶员模型,车辆控制模型(CD CS 状态切 以及EV HEV Engine模式转), 电池及电机系统模
- 用信捷XDH总线控制6轴运动,电子凸轮定长切断带折叠,本程序用于一次性床单机,ST加梯形图编写,三期验证时间加密锁
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈