/* ABC algorithm coded using C programming language */
/* Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis Karaboga in 2005,
motivated by the intelligent behavior of honey bees. */
/* Referance Papers*/
/*D. Karaboga, AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION,TECHNICAL REPORT-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department 2005.*/
/*D. Karaboga, B. Basturk, A powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm, Journal of Global Optimization, Volume:39, Issue:3,pp:459-171, November 2007,ISSN:0925-5001 , doi: 10.1007/s10898-007-9149-x */
/*D. Karaboga, B. Basturk, On The Performance Of Artificial Bee Colony (ABC) Algorithm, Applied Soft Computing,Volume 8, Issue 1, January 2008, Pages 687-697. */
/*D. Karaboga, B. Akay, A Comparative Study of Artificial Bee Colony Algorithm, Applied Mathematics and Computation, 214, 108-132, 2009. */
/*Copyright � 2009 Erciyes University, Intelligent Systems Research Group, The Dept. of Computer Engineering*/
/*Contact:
Dervis Karaboga (karaboga@erciyes.edu.tr )
Bahriye Basturk Akay (bahriye@erciyes.edu.tr)
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <conio.h>
#include <time.h>
/* Control Parameters of ABC algorithm*/
#define NP 40 /* The number of colony size (employed bees+onlooker bees)*/
#define FoodNumber NP/2 /*The number of food sources equals the half of the colony size*/
#define limit 100 /*A food source which could not be improved through "limit" trials is abandoned by its employed bee*/
#define maxCycle 3000 /*The number of cycles for foraging {a stopping criteria}*/
/* Problem specific variables*/
#define D 50 /*The number of parameters of the problem to be optimized*/
#define lb -5.12 /*lower bound of the parameters. */
#define ub 5.12 /*upper bound of the parameters. lb and ub can be defined as arrays for the problems of which parameters have different bounds*/
#define runtime 30 /*Algorithm can be run many times in order to see its robustness*/
double Foods[FoodNumber][D]; /*Foods is the population of food sources. Each row of Foods matrix is a vector holding D parameters to be optimized. The number of rows of Foods matrix equals to the FoodNumber*/
double f[FoodNumber]; /*f is a vector holding objective function values associated with food sources */
double fitness[FoodNumber]; /*fitness is a vector holding fitness (quality) values associated with food sources*/
double trial[FoodNumber]; /*trial is a vector holding trial numbers through which solutions can not be improved*/
double prob[FoodNumber]; /*prob is a vector holding probabilities of food sources (solutions) to be chosen*/
double solution [D]; /*New solution (neighbour) produced by v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) j is a randomly chosen parameter and k is a randomlu chosen solution different from i*/
double ObjValSol; /*Objective function value of new solution*/
double FitnessSol; /*Fitness value of new solution*/
int neighbour, param2change; /*param2change corrresponds to j, neighbour corresponds to k in equation v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij})*/
double GlobalMin; /*Optimum solution obtained by ABC algorithm*/
double GlobalParams[D]; /*Parameters of the optimum solution*/
double GlobalMins[runtime]; /*GlobalMins holds the GlobalMin of each run in multiple runs*/
double r; /*a random number in the range [0,1)*/
/*a function pointer returning double and taking a D-dimensional array as argument */
/*If your function takes additional arguments then change function pointer definition and lines calling "...=function(solution);" in the code*/
typedef double (*FunctionCallback)(double sol[D]);
/*benchmark functions */
double sphere(double sol[D]);
double Rosenbrock(double sol[D]);
double Griewank(double sol[D]);
double Rastrigin(double sol[D]);
/*Write your own objective function name instead of sphere*/
FunctionCallback function = &Rastrigin;
/*Fitness function*/
double CalculateFitness(double fun)
{
double result=0;
if(fun>=0)
{
result=1/(fun+1);
}
else
{
result=1+fabs(fun);
}
return result;
}
/*The best food source is memorized*/
void MemorizeBestSource()
{
int i,j;
for(i=0;i<FoodNumber;i++)
{
if (f[i]<GlobalMin)
{
GlobalMin=f[i];
for(j=0;j<D;j++)
GlobalParams[j]=Foods[i][j];
}
}
}
/*Variables are initialized in the range [lb,ub]. If each parameter has different range, use arrays lb[j], ub[j] instead of lb and ub */
/* Counters of food sources are also initialized in this function*/
void init(int index)
{
int j;
for (j=0;j<D;j++)
{
r = ( (double)rand() / ((double)(RAND_MAX)+(double)(1)) );
Foods[index][j]=r*(ub-lb)+lb;
solution[j]=Foods[index][j];
}
f[index]=function(solution);
fitness[index]=CalculateFitness(f[index]);
trial[index]=0;
}
/*All food sources are initialized */
void initial()
{
int i;
for(i=0;i<FoodNumber;i++)
{
init(i);
}
GlobalMin=f[0];
for(i=0;i<D;i++)
GlobalParams[i]=Foods[0][i];
}
void SendEmployedBees()
{
int i,j;
/*Employed Bee Phase*/
for (i=0;i<FoodNumber;i++)
{
/*The parameter to be changed is determined randomly*/
r = ((double)rand() / ((double)(RAND_MAX)+(double)(1)) );
param2change=(int)(r*D);
/*A randomly chosen solution is used in producing a mutant solution of the solution i*/
r = ( (double)rand() / ((double)(RAND_MAX)+(double)(1)) );
neighbour=(int)(r*FoodNumber);
/*Randomly selected solution must be different from the solution i*/
while(neighbour==i)
{
r = ( (double)rand() / ((double)(RAND_MAX)+(double)(1)) );
neighbour=(int)(r*FoodNumber);
}
for(j=0;j<D;j++)
solution[j]=Foods[i][j];
/*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
r = ( (double)rand() / ((double)(RAND_MAX)+(double)(1)) );
solution[param2change]=Foods[i][param2change]+(Foods[i][param2change]-Foods[neighbour][param2change])*(r-0.5)*2;
/*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
if (solution[param2change]<lb)
solution[param2change]=lb;
if (solution[param2change]>ub)
solution[param2change]=ub;
ObjValSol=function(solution);
FitnessSol=CalculateFitness(ObjValSol);
/*a greedy selection is applied between the current solution i and its mutant*/
if (FitnessSol>fitness[i])
{
/*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
trial[i]=0;
for(j=0;j<D;j++)
Foods[i][j]=solution[j];
f[i]=ObjValSol;
fitness[i]=FitnessSol;
}
else
{ /*if the solution i can not be improved, increase its trial counter*/
trial[i]=trial[i]+1;
}
}
/*end of employed bee phase*/
}
/* A food source is chosen with the probability which is proportioal to its quality*/
/*Different schemes can be used to calculate the probability values*/
/*For example prob(i)=fitness(i)/sum(fitness)*/
/*or in a way used in the metot below prob(i)=a*fitness(i)/max(fitness)+b*/
/*probability values are calculated by using fitness values and normalized by dividing maximum fitness value*/
void CalculateProbabilities()
{
int i;
double maxfit;
maxfit=fitness[0];
for (i=1;i<FoodNumber;i++)
{
if (fitness[i]>maxfit)
maxfit=fitness[i];
}
for (i=0;i<FoodNumber;i++)
{
prob[i]=(0.9*(fitness[i]/maxfit))+0.