本程序简单的示范了如何使用ATMEGA16的定时器
AVR定时器的要点介绍
T0工作于CTC模式,输出1KHz/2KHz 50%占空比的方波
T1工作于快速PWM模式兼输入捕捉
T2工作于相位修正PWM模式,输出490Hz的8bit PWM波
出于简化程序考虑,各种数据没有对外输出,学习时建议使用JTAG ICE硬件仿真器
对于定时器,AVRstudio的软件仿真是不准确的。
*/
#include <avr/io.h>
#include <avr/signal.h>
#include <avr/interrupt.h>
//时钟定为8MHz,F_CPU=8000000
//管脚定义
#define ICPKEY 6 //ICP1 PD6 按键模拟ICP输入
#define PWM0 3 //OC0 PB3
#define PWM1A 5 //OC1A PD5
#define PWM1B 4 //OC1B PD4
#define PWM2 7 //OC2 PD7
//宏定义
#define PWM1A_ON() PORTD|= (1<<PWM1A) //输出高电平,灯亮
#define PWM1A_OFF() PORTD&=~(1<<PWM1A) //输出低电平,灯灭
//全局变量
volatile unsigned int ICP_Time; //记录ICP输入捕捉事件的发生时刻
volatile unsigned char T2PWM; //设置T2的PWM值
volatile unsigned char T0OCR; //设置T0的时间值
//仿真时在watch窗口,监控这些变量。
void timer0_init(void) //CTC模式输出1KHz/2KHz方波
{
OCR0 = T0OCR; //设定TOP值
//TOP=8000000/(2*64*1000)-1=61.5 选61 1.008KHz(0.992mS)
//TOP=8000000/(2*64*2000)-1=30.25 选30 2.016KHz(0.496ms)
TCCR0 = (1<<WGM01)|(0<<WGM00)|(0<<COM01)|(1<<COM00)|(0<<CS02)|(1<<CS01)|(1<<CS00);
//64分频,CTC模式,OC0取反输出方波
}
void timer1_init(void)
{
OCR1A = 39062; //设定TOP值.时间5S(0.2Hz)
//TOP=8000000/(1024*0.2)=39062.5
OCR1B = 15624; //设定OC1B的PWM值 约2秒钟 40%
TCCR1A = (1<<COM1B1)|(0<<COM1B0)|(1<<WGM11)|(1<<WGM10);
TCCR1B = (0<<ICES1)|(1<<WGM13)|(1<<WGM12)|(1<<CS12)|(0<<CS11)|(1<<CS10);
//1024分频,WGM1=15 快速PWM模式,TOP=OCRnA,ICP下降沿触发,OC1B正向PWM输出,OC1A为普通IO
}
SIGNAL(SIG_INPUT_CAPTURE1) //输入捕捉中断
{
ICP_Time=ICR1; //读取ICP输入捕捉事件的发生时刻
}
SIGNAL(SIG_OUTPUT_COMPARE1A)//T1输出比较A匹配中断
{
//在WGM1=15 快速PWM模式下,TOP=39062等同于5S左右的定时中断
T2PWM+=10;
OCR2=T2PWM; //修改T2的PWM值
if (T0OCR==61)
T0OCR=30; //改成1KHz
else
T0OCR=61; //改成2KHz
OCR0=T0OCR; //修改T0的时间值
}
void timer2_init(void)//相位修正PWM模式
{
OCR2 = T2PWM; //设定PWM值(最大值固定为255,8bit)
TCCR2 = (0<<WGM21)|(1<<WGM20)|(1<<COM21)|(0<<COM20)|(0<<CS22)|(1<<CS21)|(1<<CS20);
//32分频,相位修正PWM模式,PWM频率为490Hz,OC2正向PWM输出
//fPWM=fclk_IO/(2*N*TOP)=8000000/(2*32*255)=490Hz
}
int main(void)
{
//上电默认DDRx=0x00,PORTx=0x00 输入,无上拉电阻
PORTA =0xFF; //不用的管脚使能内部上拉电阻。
PORTC =0xFF;
PORTB =~ (1<<PWM0); //低电平,灯灭
DDRB = (1<<PWM0); //输出
PORTD =~((1<<PWM1A)|(1<<PWM1B)|(1<<PWM2)); //低电平,灯灭
DDRD = (1<<PWM1A)|(1<<PWM1B)|(1<<PWM2); //输出
T2PWM=0x80;
T0OCR=30;
ICP_Time=0x0000;
timer0_init();
timer1_init();
timer2_init();
TIMSK = (1<<TICIE1)|(1<<OCIE1A); //使能T1输入捕捉中断,T1输出比较A匹配中断(作定时用)
sei(); //使能全局中断
while (1)
{
if (ICP_Time>15624)
PWM1A_ON(); //如果数值大于15624(约2秒),OC1A输出高电平
else
PWM1A_OFF(); //否则输出低电平
}
}
/*
程序运行效果
引脚OC0(每5秒钟切换)交替输出1KHz和2KHz的50%占空比方波,接到无源蜂鸣器上,能听到不同频率的声音
引脚OC1B输出0.2Hz的40%占空比的PWM波,精度39061级(略大于15bit)
引脚OC2输出490Hz的PWM波,精度8bit,每5秒钟PWM值增大10级,对应的LED亮度将会随之变化)
ICP由引脚ICP1上的按键触发,ICP_Time将会记录下时间发生的时刻(相对于T1定时器的本次计数开始时间),
如果数值大于15624(约2秒),OC1A输出高电平,否则输出低电平(刚好跟OC1B反相)
如果使用AVR-51实验板作本实验,注意输出电平和LED的关系。还有蜂鸣器的声音较大,耳朵比较难受)
*/
/*
附录 AVR定时器的要点介绍
(大部分摘自 M16中文手册,未能一一测试)
M16的T1 16位定时器一共有15种工作模式,其他2个8位定时器(T0/T2)相对简单,除了T2有异步工作模式用于RTC应用外
(可以利用溢出中断和比较匹配中断作定时功能)
分5种工作类型
1 普通模式 WGM1=0
跟51的普通模式差不多,有TOV1溢出中断,发生于TOP时
1 采用内部计数时钟 用于 ICP捕捉输入场合---测量脉宽/红外解码
(捕捉输入功能可以工作在多种模式下,而不单单只是普通模式)
2 采用外部计数脉冲输入 用于 计数,测频
其他的应用,采用其他模式更为方便,不需要像51般费神
2 CTC模式 [比较匹配时清零定时器模式] WGM1=4,12
跟51的自动重载模式差不多
1 用于输出50%占空比的方波信号
2 用于产生准确的连续定时信号
WGM1=4时, 最大值由OCR1A设定,TOP时产生OCF1A比较匹配中断
WGM1=12时,最大值由ICF1设定, TOP时产生ICF1输入捕捉中断
注:WGM=15时,也能实现从OC1A输出方波,而且具备双缓冲功能
计算公式: fOCn=fclk_IO/(2*N*(1+TOP))
变量N 代表预分频因子(1、8、32,64、256,1024)。
3 快速PWM模式 WGM1=5,6,7,14,15
单斜波计数,用于输出高频率的PWM信号(比双斜波的高一倍频率)
都有TOV1溢出中断,发生于TOP时
比较匹配后可以产生OCF1x比较匹配中断.
WGM1=5时, 最大值为0x00FF, 8位分辨率
WGM1=6时, 最大值为0x01FF, 9位分辨率
WGM1=7时, 最大值为0x03FF,10位分辨率
WGM1=14时,最大值由ICF1设定, TOP时产生ICF1输入捕捉中断 (单缓冲)
WGM1=15时,最大值由OCR1A设定,TOP时产生OCF1A比较匹配中断(双缓冲,但OC1A将没有PWM能力,最多只能输出方波)
改变TOP值时必须保证新的TOP值不小于所有比较寄存器的数值
注意,即使OCR1A/B设为0x0000,也会输出一个定时器时钟周期的窄脉冲,而不是一直为低电平
计算公式:fPWM=fclk_IO/(N*(1+TOP))
4 相位修正PWM模式 WGM1=1,2,3,10,11
双斜波计数,用于输出高精度的,相位准确的,对称的PWM信号
都有TOV1溢出中断,但发生在BOOTOM时
比较匹配后可以产生OCF1x比较匹配中断.
WGM1=1时, 最大值为0x00FF, 8位分辨率
WGM1=2时, 最大值为0x01FF, 9位分辨率
WGM1=3时, 最大值为0x03FF,10位分辨率
WGM1=10时,最大值由ICF1设定, TOP时产生ICF1输入捕捉中断 (单缓冲)
WGM1=11时,最大值由OCR1A设定,TOP时产生OCF1A比较匹配中断(双缓冲,但OC1A将没有PWM能力,最多只能输出方波)
改变TOP值时必须保证新的TOP值不小于所有比较寄存器的数值
可以输出0%~100%占空比的PWM信号
若要在T/C 运行时改变TOP 值,最好用相位与频率修正模式代替相位修正模式。若TOP保持不变,那么这两种工作模式实际没有区别
计算公式:fPWM=fclk_IO/(2*N*TOP)
5 相位与频率修正PWM模式 WGM1=8,9
双斜波计数,用于输出高精度的、相位与频率都准确的PWM波形
都有TOV1溢出中断,但发生在BOOTOM时
比较匹配后可以产生OCF1x比较匹配中断.
WGM1=8时,最大值由ICF1设定, TOP时产生ICF1输入捕捉中断 (单缓冲)
WGM1=9时,最大值由OCR1A设定,TOP时产生OCF1A比较匹配中断(双缓冲,但OC1A将没有PWM能力,最多只能输出方波)
相频修正修正PWM 模式与相位修正PWM 模式的主要区别在于OCR1x 寄存器的更新时间
改变TOP值时必须保证新的TOP值不小于所有比较寄存器的数值
可以输出0%~100%占空比的PWM信号
使用固定TOP 值时最好使用ICR1 寄存器定义TOP。这样OCR1A 就可以用于在OC1A输出PWM 波。
但是,如果PWM 基频不断变化(通过改变TOP值), OCR1A的双缓冲特性使其更适合于这个应用。
计算公式:fPWM=fclk_IO/(2*N*TOP)
T/C 的时钟源
T/C 的时钟源可以有多种选择,由CS12:0控制,分别用于高速(低分频)/长时间(高分频)/外部计数场合
一个16位定时器,在8MHz系统时钟驱动下,可以实现uS级的高速定时和长达8秒的超长定时,这可是标准51的弱点
CS12 CS11 CS10 说明
0 0 0 无时钟源 (T/C 停止)
0 0 1 clkIO/1 ( 无预分频)
0 1 0 clkIO/8 ( 来自预分频器)
0 1 1 clkIO/64 ( 来自预分频器)
1 0 0 clkIO/256 ( 来自预分频器)
1 0 1 clkIO/1024 ( 来自预分频器)
1 1 0 外部T1 引脚,下降沿驱动
1 1 1 外部T1 引脚,上升沿驱动
分频器复位
在高预分频应用时, 通过复位预分频器来同步T/C 与程序运行,可以减少误差。
但是必须注意另一个T/C是否也在使用这一预分频器,因为预分频器复位将会影响所有与其连接的T/C。
外部时钟源
由于使用了引脚同步逻辑,建议外部时钟的最高频率不要大于fclk_IO/2.5。
外部时钟源不送入预分频器
选择使用外部时钟源后,即使T1引脚被定义为输出,其T1引脚上的逻辑信号电平变化仍然会驱动T/C1 计数,这个特性允许用户通过软件来控制计数。
输入捕捉单元
T/C 的输入捕捉单元可用来捕获外部事件,并为其赋予