% EMD.M
%
% G. Rilling, July 2002
%
% computes EMD (Empirical Mode Decomposition) according to:
%
% N. E. Huang et al., "The empirical mode decomposition and the
% Hilbert spectrum for non-linear and non stationary time series analysis,"
% Proc. Royal Soc. London A, Vol. 454, pp. 903-995, 1998
%
% with variations reported in:
%
% G. Rilling, P. Flandrin and P. Gon�alv�s
% "On Empirical Mode Decomposition and its algorithms"
% IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing
% NSIP-03, Grado (I), June 2003
%
% stopping criterion for sifting :
% at each point : mean amplitude < threshold2*envelope amplitude
% &
% mean of boolean array ((mean amplitude)/(envelope amplitude) > threshold) < tolerance
% &
% |#zeros-#extrema|<=1
%
% inputs: - x : analysed signal (line vector)
% - t (optional) : sampling times (line vector) (default : 1:length(x))
% - stop (optional) : threshold, threshold2 and tolerance (optional)
% for sifting stopping criterion
% default : [0.05,0.5,0.05]
% - tst (optional) : if equals to 1 shows sifting steps with pause
% if equals to 2 no pause
%
% outputs: - imf : intrinsic mode functions (last line = residual)
% - ort : index of orthogonality
% - nbits : number of iterations for each mode
%
% calls: - extr (finds extrema and zero-crossings)
% - io : computes the index of orthogonality
function [imf,ort,nbits] = emd(x,t,stop,tst);
% default for stopping
defstop = [0.05,0.5,0.05];
if(nargin==1)
t = 1:length(x);
stop = defstop;
tst = 0;
end
if(nargin==2)
stop = defstop;
tst = 0;
end
if (nargin==3)
tst=0;
end
S = size(x);
if ((S(1) > 1) & (S(2) > 1)) | (length(S) > 2)
error('x must have only one row or one column')
end
if S(1) > 1
x = x';
end
S = size(t);
if ((S(1) > 1) & (S(2) > 1)) | (length(S) > 2)
error('t must have only one row or one column')
end
if S(1) > 1
t = t';
end
if (length(t)~=length(x))
error('x and t must have the same length')
end
S = size(stop);
if ((S(1) > 1) & (S(2) > 1)) | (S(1) > 3) | (S(2) > 3) | (length(S) > 2)
error('stop must have only one row or one column of max three elements')
end
if S(1) > 1
stop = stop';
S = size(stop);
end
if S(2) < 3
stop(3)=defstop(3);
end
if S(2) < 2
stop(2)=defstop(2);
end
sd = stop(1);
sd2 = stop(2);
tol = stop(3);
if tst
figure
end
% maximum number of iterations
MAXITERATIONS=2000;
% maximum number of symmetrized points for interpolations
NBSYM = 2;
lx = length(x);
sdt(lx) = 0;
sdt = sdt+sd;
sd2t(lx) = 0;
sd2t = sd2t+sd2;
% maximum number of extrema and zero-crossings in residual
ner = lx;
nzr = lx;
r = x;
imf = [];
k = 1;
% iterations counter for extraction of 1 mode
nbit=0;
% total iterations counter
NbIt=0;
while ner > 2
% current mode
m = r;
% mode at previous iteration
mp = m;
sx = sd+1;
% tests if enough extrema to proceed
test = 0;
[indmin,indmax,indzer] = extr(m);
lm=length(indmin);
lM=length(indmax);
nem=lm + lM;
nzm=length(indzer);
j=1;
% sifting loop
while ( mean(sx > sd) > tol | any(sx > sd2) | (abs(nzm-nem)>1)) & (test == 0) & nbit<MAXITERATIONS
if(nbit>MAXITERATIONS/5 & mod(nbit,floor(MAXITERATIONS/10))==0)
disp(['mode ',int2str(k),' nombre d iterations : ',int2str(nbit)])
disp(['stop parameter mean value : ',num2str(s)])
end
% boundary conditions for interpolations :
if indmax(1) < indmin(1)
if m(1) > m(indmin(1))
lmax = fliplr(indmax(2:min(end,NBSYM+1)));
lmin = fliplr(indmin(1:min(end,NBSYM)));
lsym = indmax(1);
else
lmax = fliplr(indmax(1:min(end,NBSYM)));
lmin = [fliplr(indmin(1:min(end,NBSYM-1))),1];
lsym = 1;
end
else
if m(1) < m(indmax(1))
lmax = fliplr(indmax(1:min(end,NBSYM)));
lmin = fliplr(indmin(2:min(end,NBSYM+1)));
lsym = indmin(1);
else
lmax = [fliplr(indmax(1:min(end,NBSYM-1))),1];
lmin = fliplr(indmin(1:min(end,NBSYM)));
lsym = 1;
end
end
if indmax(end) < indmin(end)
if m(end) < m(indmax(end))
rmax = fliplr(indmax(max(end-NBSYM+1,1):end));
rmin = fliplr(indmin(max(end-NBSYM,1):end-1));
rsym = indmin(end);
else
rmax = [lx,fliplr(indmax(max(end-NBSYM+2,1):end))];
rmin = fliplr(indmin(max(end-NBSYM+1,1):end));
rsym = lx;
end
else
if m(end) > m(indmin(end))
rmax = fliplr(indmax(max(end-NBSYM,1):end-1));
rmin = fliplr(indmin(max(end-NBSYM+1,1):end));
rsym = indmax(end);
else
rmax = fliplr(indmax(max(end-NBSYM+1,1):end));
rmin = [lx,fliplr(indmin(max(end-NBSYM+2,1):end))];
rsym = lx;
end
end
tlmin = 2*t(lsym)-t(lmin);
tlmax = 2*t(lsym)-t(lmax);
trmin = 2*t(rsym)-t(rmin);
trmax = 2*t(rsym)-t(rmax);
% in case symmetrized parts do not extend enough
if tlmin(1) > t(1) | tlmax(1) > t(1)
if lsym == indmax(1)
lmax = fliplr(indmax(1:min(end,NBSYM)));
else
lmin = fliplr(indmin(1:min(end,NBSYM)));
end
if lsym == 1
error('bug')
end
lsym = 1;
tlmin = 2*t(lsym)-t(lmin);
tlmax = 2*t(lsym)-t(lmax);
end
if trmin(end) < t(lx) | trmax(end) < t(lx)
if rsym == indmax(end)
rmax = fliplr(indmax(max(end-NBSYM+1,1):end));
else
rmin = fliplr(indmin(max(end-NBSYM+1,1):end));
end
if rsym == lx
error('bug')
end
rsym = lx;
trmin = 2*t(rsym)-t(rmin);
trmax = 2*t(rsym)-t(rmax);
end
mlmax =m(lmax);
mlmin =m(lmin);
mrmax =m(rmax);
mrmin =m(rmin);
% definition of envelopes from interpolation
envmax = interp1([tlmax t(indmax) trmax],[mlmax m(indmax) mrmax],t,'spline');
envmin = interp1([tlmin t(indmin) trmin],[mlmin m(indmin) mrmin],t,'spline');
envmoy = (envmax + envmin)/2;
m = m - envmoy;
[indmin,indmax,indzer] = extr(m);
lm=length(indmin);
lM=length(indmax);
nem = lm + lM;
nzm = length(indzer);
% evaluation of mean zero
sx=2*(abs(envmoy))./(abs(envmax-envmin));
s = mean(sx);
% display
if tst
subplot(4,1,1)
plot(t,mp);hold on;
plot(t,envmax,'--k');plot(t,envmin,'--k');plot(t,envmoy,'r');
title(['IMF ',int2str(k),'; iteration ',int2str(nbit),' before sifting']);
set(gca,'XTick',[])
hold off
subplot(4,1,2)
plot(t,sx)
hold on
plot(t,sdt,'--r')
plot(t,sd2t,':k')
title('stop parameter')
set(gca,'XTick',[])
hold off
subplot(4,1,3)
plot(t,m)
title(['IMF ',int2str(k),'; iteration ',int2str(nbit),' after sifting']);
set(gca,'XTick',[])
subplot(4,1,4);
plot(t,r-m)
title('residue');
disp(['stop parameter mean value : ',num2str(s)])
if tst == 2
pause(0.01)
else
pause
end
end
% end loop : stops if not enough extrema
if nem < 3
test = 1;
end
mp = m;
nbit=nbit+1;
NbIt=NbIt+1;
if(nbit==(MAXITERATIONS-1))
warning(['forced stop of sifting : too many iterations... mode ',int2str(k),'. stop parameter mean value : ',num2str(s)])
end
end
imf(k,:) = m;
if tst
disp(['mode ',int2str(k),' enregistre'])
end
nbits(k) = nbit;
k = k+1;
r = r - m;
[indmin,indmax,indzer] = extr(r);
ner = length(indmin) + length(indmax);
nzr = length(indzer);
nbit=1;
if (max(r) - min(r)) < (1e-10)*(max(x) - min(x))
if ner > 2
warning('forced stop of EMD : too small amplitude')
else
disp('forced stop of EMD : too small amplitude')
end
break
end
end
imf(k,:) = r;
ort= ratio1(imf(1:k-1,:)');
if tst
close
end