import java.io.*;
import java.util.*;
//
// Kernel Cache
//
// l is the number of total data items
// size is the cache size limit in bytes
//
class Cache {
private final int l;
private int size;
private final class head_t
{
head_t prev, next; // a cicular list
double[] data;
int len; // data[0,len) is cached in this entry
}
private final head_t[] head;
private head_t lru_head;
Cache(int l_, int size_)
{
l = l_;
size = size_;
head = new head_t[l];
for(int i=0;i<l;i++) head[i] = new head_t();
size /= 8;
size -= l * 2; // sizeof(head_t) / sizeof(double)
lru_head = new head_t();
lru_head.next = lru_head.prev = lru_head;
}
private void lru_delete(head_t h)
{
// delete from current location
h.prev.next = h.next;
h.next.prev = h.prev;
}
private void lru_insert(head_t h)
{
// insert to last position
h.next = lru_head;
h.prev = lru_head.prev;
h.prev.next = h;
h.next.prev = h;
}
// request data [0,len)
// return some position p where [p,len) need to be filled
// (p >= len if nothing needs to be filled)
// java: simulate pointer using single-element array
int get_data(int index, double[][] data, int len)
{
head_t h = head[index];
if(h.len > 0) lru_delete(h);
int more = len - h.len;
if(more > 0)
{
// free old space
while(size < more)
{
head_t old = lru_head.next;
lru_delete(old);
size += old.len;
old.data = null;
old.len = 0;
}
// allocate new space
double[] new_data = new double[len];
if(h.data != null) System.arraycopy(h.data,0,new_data,0,h.len);
h.data = new_data;
size -= more;
do {int _=h.len; h.len=len; len=_;} while(false);
}
lru_insert(h);
data[0] = h.data;
return len;
}
void swap_index(int i, int j)
{
if(i==j) return;
if(head[i].len > 0) lru_delete(head[i]);
if(head[j].len > 0) lru_delete(head[j]);
do {double[] _=head[i].data; head[i].data=head[j].data; head[j].data=_;} while(false);
do {int _=head[i].len; head[i].len=head[j].len; head[j].len=_;} while(false);
if(head[i].len > 0) lru_insert(head[i]);
if(head[j].len > 0) lru_insert(head[j]);
if(i>j) do {int _=i; i=j; j=_;} while(false);
for(head_t h = lru_head.next; h!=lru_head; h=h.next)
{
if(h.len > i)
{
if(h.len > j)
do {double _=h.data[i]; h.data[i]=h.data[j]; h.data[j]=_;} while(false);
else
{
// give up
lru_delete(h);
size += h.len;
h.data = null;
h.len = 0;
}
}
}
}
}
//
// Kernel evaluation
//
// the static method k_function is for doing single kernel evaluation
// the constructor of Kernel prepares to calculate the l*l kernel matrix
// the member function get_Q is for getting one column from the Q Matrix
//
abstract class Kernel {
private svm_node[][] x;
private final double[] x_square;
// svm_parameter
private final int kernel_type;
private final double degree;
private final double gamma;
private final double coef0;
abstract double[] get_Q(int column, int len);
void swap_index(int i, int j)
{
do {svm_node[] _=x[i]; x[i]=x[j]; x[j]=_;} while(false);
if(x_square != null) do {double _=x_square[i]; x_square[i]=x_square[j]; x_square[j]=_;} while(false);
}
private static double tanh(double x)
{
double e = Math.exp(x);
return 1.0-2.0/(e*e+1);
}
double kernel_function(int i, int j)
{
switch(kernel_type)
{
case svm_parameter.LINEAR:
return dot(x[i],x[j]);
case svm_parameter.POLY:
return Math.pow(gamma*dot(x[i],x[j])+coef0,degree);
case svm_parameter.RBF:
return Math.exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j])));
case svm_parameter.SIGMOID:
return tanh(gamma*dot(x[i],x[j])+coef0);
default:
System.err.print("unknown kernel function.\n");
System.exit(1);
return 0; // java
}
}
Kernel(int l, svm_node[][] x_, svm_parameter param)
{
this.kernel_type = param.kernel_type;
this.degree = param.degree;
this.gamma = param.gamma;
this.coef0 = param.coef0;
x = (svm_node[][])x_.clone();
if(kernel_type == svm_parameter.RBF)
{
x_square = new double[l];
for(int i=0;i<l;i++)
x_square[i] = dot(x[i],x[i]);
}
else x_square = null;
}
static double dot(svm_node[] x, svm_node[] y)
{
double sum = 0;
int xlen = x.length;
int ylen = y.length;
int i = 0;
int j = 0;
while(i < xlen && j < ylen)
{
if(x[i].index == y[j].index)
sum += x[i++].value * y[j++].value;
else
{
if(x[i].index > y[j].index)
++j;
else
++i;
}
}
return sum;
}
static double k_function(svm_node[] x, svm_node[] y,
svm_parameter param)
{
switch(param.kernel_type)
{
case svm_parameter.LINEAR:
return dot(x,y);
case svm_parameter.POLY:
return Math.pow(param.gamma*dot(x,y)+param.coef0,param.degree);
case svm_parameter.RBF:
{
double sum = 0;
int xlen = x.length;
int ylen = y.length;
int i = 0;
int j = 0;
while(i < xlen && j < ylen)
{
if(x[i].index == y[j].index)
{
double d = x[i++].value - y[j++].value;
sum += d*d;
}
else if(x[i].index > y[j].index)
{
sum += y[j].value * y[j].value;
++j;
}
else
{
sum += x[i].value * x[i].value;
++i;
}
}
while(i < xlen)
{
sum += x[i].value * x[i].value;
++i;
}
while(j < ylen)
{
sum += y[j].value * y[j].value;
++j;
}
return Math.exp(-param.gamma*sum);
}
case svm_parameter.SIGMOID:
return tanh(param.gamma*dot(x,y)+param.coef0);
default:
System.err.print("unknown kernel function.\n");
System.exit(1);
return 0; // java
}
}
}
// Generalized SMO+SVMlight algorithm
// Solves:
//
// min 0.5(\alpha^T Q \alpha) + b^T \alpha
//
// 0 <= alpha_i <= C
// y^T \alpha = \delta
// y_i = +1 or -1
//
// Given:
//
// Q, b, y, C, and an initial feasible point \alpha
// l is the size of vectors and matrices
// eps is the stopping criterion
//
// solution will be put in \alpha, objective value will be put in obj
//
class Solver {
int active_size;
byte[] y;
double[] G; // gradient of objective function
static final byte LOWER_BOUND = 0;
static final byte UPPER_BOUND = 1;
static final byte FREE = 2;
byte[] alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE
double[] alpha;
Kernel Q;
double eps;
double C;
double[] b;
int[] active_set;
double[] G_bar; // gradient, if we treat free variables as 0
int l;
boolean unshrinked; // XXX
static final double INF = java.lang.Double.POSITIVE_INFINITY;
void update_alpha_status(int i)
{
if(alpha[i] >= C)
alpha_status[i] = UPPER_BOUND;
else if(alpha[i] <= 0)
alpha_status[i] = LOWER_BOUND;
else alpha_status[i] = FREE;
}
boolean is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
boolean is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
boolean is_free(int i) { return alpha_status[i] == FREE; }
// java: information about solution except alpha,
// because we cannot return multiple values otherwise...
static class SolutionInfo {
double obj;
double rho;
double upper_bound;
double r; // for Solver_NU
}
void swap_index(int i, int j)
{
Q.swap_index(i,j);
do {byte _=y[i]; y[i]=y[j]; y[j]=_;} while(false);
do {double _=G[i]; G[i]=G[j]; G[j]=_;} while(false);
do {byte _=alpha_status[i]; alpha_status[i]=alpha_status[j]; alpha_status[j]=_;} while(false);
do {double _=alpha[i]; alpha[i]=alpha[j]; alpha[j]=_;} while(false);
do {double _=b[i]; b[i]=b[j]; b[j]=_;} while(false);
do {int _=active_set[i]; active_set[i]=active_set[j]; active_set[j]=_;} while(false);
do {double _=G_bar[i]; G_bar[i]=G_bar[j]; G_bar[j]=_;} while(false);
}
void reconstruct_gradient()
{
// reconstruct inactive elements of G from G_bar and free variables
if(active_size == l) return;
int i;
for(i=active_size;i<l;i++)
G[i] = C * G_bar[i] + b[i];
for(i=0;i<active_size;i++)
if(is_free(i))
{
double[] Q_i = Q.get_Q(i,l);
double alpha_
JonSco
- 粉丝: 95
- 资源: 1万+
最新资源
- Matlab_基于视觉的机械手控制算法的Matlab仿真.zip
- Matlab_基于深度双线性卷积神经网络的盲图像质量评估.zip
- Matlab_基于时间一致性保持空间特征选择的自适应判别相关滤波器鲁棒视觉目标跟踪的Matlab实现.zip
- Matlab_基于凸优化的张量分解补全去噪的Matlab代码.zip
- Matlab_基于遗传算法的BP网络设计应用背景为交通流量的预测.zip
- Matlab_基于随机补丁网络的高光谱图像分类.zip
- Matlab_集群机器人Matlab仿真.zip
- Matlab_几何处理的Matlab工具箱.zip
- Matlab_基于有限元和人工神经网络的电磁电感器建模与设计.zip
- Matlab_简单的Matlab代码,用于测试地震反演问题的优化算法.zip
- Matlab_简单的Matlab日志模块.zip
- Matlab_计算机视觉算法集合在Matlab中实现.zip
- Matlab_简单的Python脚本,在Matlab中计算选择性搜索建议.zip
- Matlab_简单的推理代码,只需运行demomlx.zip
- Matlab_简明控制理论教程基于 DR_CAN 哔站系列课程.zip
- Matlab_将任意二进制文件转换为视频.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈